Silicon carbide neutron detectors for reactor monitoring in subcritical conditions

Vladimir Radulović^a, Takahiro Makino^b, Danilo Bisiach^c

^aJožef Stefan Institute, Ljubljana, Slovenia

^bQST, Takasaki, Japan

^cInstrumentation Technologies, Slovenia

ANIMMA 2025, June 9-13, Valencia, Spain

Motivation & Objectives

- SiC hot topic in radiation detection research
 - Wide bandgap semiconductor
 - Radiation hardness
 - $\bullet \rightarrow high T$
 - → harsh environments
- Power electronics based on SiC
- First applications of SiC are emerging
- Our research: sensitivity, converters, applications, education

Bled cream cake (blejska kremšnita)

Introduction 00000000

SiC neutron detector (SBD)

Introduction 00000000

- 2016-2022: 2x NATO-SPS funded research projects (E-SiCure, E-SiCure2)
 - Rudjer Bošković Institute, Zagreb, Croatia
 - ANSTO, Sydney, Australia
 - QST, Takasaki, Japan
 - University of Aveiro, Portugal
 - Jožef Stefan Institute, Ljubljana, Slovenia

JSI TRIGA reactor

Neutron detection testing

Power: 50 mW - 250 kW

• Max. neutron flux: $2 \times 10^{13} \ n \ cm^{-2} s^{-1}$

JSI TRIGA reactor

- Detector areas: 1x1 mm², 2x2 mm², 3x3mm², 4x4², 5x5mm², 10x10mm²
- \bullet Converters: 6 LiF, 10 B / 10 B₄C, μ m layers
- Sensitivities (cps/nv): 10^{-5} (1x1), 10^{-3} (2x2), 10^{-2} (10x10)

- Measurements with 1 SiC detectors and different converters / properties
- $\bullet \ \mathsf{Structures} \ / \ \mathsf{Charged} \ \mathsf{particle} \ \mathsf{spectra} \leftrightarrows \mathsf{Detection} \ \mathsf{efficiency}$

This work

- Large area SiC detectors (4x4 mm² and 5x5 mm²)
- ⁶LiF converter deposited onto detector contact
- Test of detection performance in reactor core, in subcritical conditions

This work

- Large area SiC detectors (4x4 mm² and 5x5 mm²)
- ⁶LiF converter deposited onto detector contact
- Test of detection performance in reactor core, in subcritical conditions
- Relevance:
 - Criticality monitoring (normal operation, accident scenario)
 - Education
- Experiments:
 - Approach to criticality
 - Axial distribution

Detector realization

- SiC diodes fabricated at QST
 - 4H-SiC, 36 μm (CVD)
 - Donor concentration: $1.7 \times 10^{14} \text{cm}^{-3}$
 - Ni contact deposition and sintering in Ar (4x4 mm², 5x5²)

Detector realization

- ⁶LiF converter prepared an deposited
- Target thickness: 20 μ m (efficiency)
- Estimated thicknesses: 6 μ m (5x5 mm²), 17 μ m (4x4 mm²))

Acquisition system

- 4 channel, 3 mode acquisition system for fission chambers, developed by CEA, commercialized by I-Tech
- Presentation at Workshop no. 1 D.Bisiach
- Presentation This afternoon D.Bisiach, From Prototype to Production: Industrialization and Application of the Libera MONACO 3 Neutron Flux Monitoring System
- I-Tech booth

Approach to criticality

- SiC detectors located in TIC2 (fixed position)
- Centronic FC165 (165 μg of ²³⁵U) in TIC1 (fixed position)
- Start: all control rods inserted (ARI)
- Progressive w/drawal of control rods, measurement of signals (PHA / count rates)

$$N = S + k_{eff}S + k_{eff}^2S + k_{eff}^3S + \dots =$$

$$= S \frac{1}{1 - k_{eff}} = SM, \text{ if } k_{eff} < 1$$

If $I \propto N$, I_i/I_0 ratio (M^{-1}) goes from 1 to 0 as we approach criticality

Approach to criticality

Approach to criticality

Axial distribution

- SiC detector assembly on steel cable, lifted in steps from bottom of TIC2
- Height measurement: Pneumatic system designed and used in 2011 for miniature FC measurements (JSI-CEA collaboration, IRPhE benchmark (2017))

Axial distribution

- SiC detector assembly on steel cable, lifted in steps from bottom of TIC2
- Height measurement: Pneumatic system designed and used in 2011 for miniature FC measurements (JSI-CEA collaboration, IRPhE benchmark (2017))
- Presentation on Wednesday by Loïc Barbot

Axial distribution

- JSI TRIGA actively used for education since the start (60 years in 2026!)
- Center of Slovenian nuclear community, Krško NPP operators, Research

- JSI TRIGA actively used for education since the start (60 years in 2026!)
- Center of Slovenian nuclear community, Krško NPP operators, Research
- International activities

- JSI TRIGA actively used for education since the start (60 years in 2026!)
- Center of Slovenian nuclear community, Krško NPP operators, Research
- International activities
- ENEEP European Nuclear Experimental Educational Platform (SI, SK, IT, CZ)

- $\qquad \hbox{Research, new experiments} \rightarrow \\ \hbox{new experiments for education}$
- SiC: Very visual, numerous options:
 - ullet α energy loss in air
 - Different thermal neutron converters (⁶Li, ¹⁰B)
 - Converter preparation and testing
 - Response vs. incident
 n. flux
 - Charged particle energies
 - Fast neutron reactions
 - Use for critical experiment, distribution measurement

Opportunities, new courses \rightarrow Visit the ENEEP Booth! :-)

Conclusions

- SiC neutron detectors: applications are emerging
- This work:
 - Performance for monitoring in subcritical conditions
 - Test of I-Tech Libera MONACO-3 with SiC
 - SiC detector applications in education (detector/reactor oriented)

Conclusions

- SiC neutron detectors: applications are emerging
- This work:
 - Performance for monitoring in subcritical conditions
 - Test of I-Tech Libera MONACO-3 with SiC
 - SiC detector applications in education (detector/reactor oriented)

Thank you for your attention!