•

INSTRUMENTATION TECHNOLOGIES

LIBERA

							۰	۰	٠	٠
							٠	٠	٠	٠
							۲	۰	٠	٠
							٠	•	٠	٠
									٠	٠
							٠	٠	٠	٠
								٠	٠	٠
									٠	
								٠	٠	
								۲	٠	٠

Libera BLM – Calibration feature updates

Simon Mattiazzi simon.mattiazzi@i-tech.si

www.i-tech.si

14th May 2025, Libera Workshop Solkan, Slovenia

CONTENTS

- Introduction:
 - Beam losses and beam loss monitors
 - LIBERA BLM and BLD instruments
- Non-idealities and calibration
 - PMT calibration
 - Detector gain compensation
 - Attenuators cascade error
 - Individual factors switches
- Radiation source calibration

Introduction: beam losses and BLMs

Beam losses:

- Beam deviates from trajectory -> damage
- Not always avoidable

Source: DESY

Beam loss monitors:

Purpose:

- Machine protection interlock
- Diagnostics and troubleshooting

Features:

- High sensitivity (single particles)
- Wide dynamic range of loss pulse amplitudes
- Fast sampling and processing: turn-by-turn, injection losses
- Allow monitoring of slow changes in background radiation
- Output signal proportional to beam current

Introduction: Libera BLM and BLD

LIBERA BLD (detector): 4X

Working principle	Scintillator + photomultiplier tube
Sensitivity	High (gamma, X-ray, e-, p+, n0)
Response time	< 1 ns
Power, control	Directly from LIBERA BLM

LIBERA BLM (processing electronics)

Hardware	125 MHz@14 bit ADC, Zynq FPGA+CPU
Features	Counting modes, processed buffers (SUM, AVG, INT), PM buffer, interlock output
Adjustability	termination, attenuation, detector gain

CALIBRATION: high level

Analog signal path

CALIBRATION: high level

CALIBRATION: high level

Built-in: Acal = Araw X BLDCalib X G X AT X ATTCalib

ON/OFF buffers, streams

Non-idealities chain:

Photomultiplier tubes:

- Different PMTs (same model, same input) -> different output signal level
- Reason: PMT amplification principle
- PMT output level: linearly proportional to anode luminous sensitivity parameter

Photomultiplier tubes:

- Different PMTs (same model, same input) -> different output signal level
- Reason: PMT amplification principle
- PMT output level: linearly proportional to anode luminous sensitivity parameter

Experimental linear dependence: sensitivity – output signal level

Calibration factor:

- Output from each PMT multiplied by its dedicated factor -> all PMTs outputs on the same level
- Factor (PMT_i) = reference/ measured output level
- No need to measure, can use linear dependence on sensitivity

INSTRUMENTATION

TECHNOLOGIES

Calibration factor:

- Output from each PMT multiplied by its dedicated factor -> all PMTs outputs on the same level
- Factor (PMT_i) = reference/ measured output level
- No need to measure, can use linear dependence on sensitivity

INSTRUMENTATION

TECHNOLOGIES

New: *BLD_{Calib}* factor proposed during factory acceptance test for each Libera BLD and listed in the test record

PMT gain control voltage

• Exponential effect on the output level

INSTRUMENTATION

TECHNOLOGIES

PMT gain control voltage

• Exponential effect on the output level

Look-up table: rough resolution

Vgc ref	0.00	0.30	0.40	0.50	0,60	0.70	0.80	0.90
G	NaN	334.5	33.25	4.97	1	0.26	0.0825	0.0313

INSTRUMENTATION

TECHNOLOGIES

PMT gain control voltage

• Exponential effect on the output level

Look-up table: rough resolution

LIBERA

INSTRUMENTATION

Built-in: Acal = Araw x BLDCalib x G x AT x ATTCalib

ON/OFF buffers, streams

Non-idealities chain:

32 dB attenuator combines 5 smaller attenuators:

- 1 dB + 2 dB + 4 dB + 8 dB + 16 dB
 (each can be ON/OFF)
- Combinations allow setting all values from 1 dB to 31 dB
- Constituent attenuators are periodically turned ON/OFF – saw pattern.
- Most attenuators behave similarly

32 dB attenuator combines 5 smaller attenuators:

- 1 dB + 2 dB + 4 dB + 8 dB + 16 dB (each can be ON/OFF)
- Combinations allow setting all values from 1 dB to 31 dB
- Constituent attenuators are periodically turned ON/OFF saw pattern.
- Most attenuators behave similarly

Built-in calibration table:

- Signal multiplication factor for each att setting
- Currently: placeholders for user-custom compensation of cascade error

att_calib_factor

LIBERA

ON/OF

buffers, streams

LIBERA

Built-in: Acal = Araw x BLDcalib x G x AT x ATTcalib

Non-idealities chain:

TECHNOLOGIES

Calibration is either fully OFF or fully ON (all factors):

- If ON, the outputs from all detectors are always in the same scale
- Makes 100% sense for **BLD**_{calib} and **ATT**_{calib} (calibration of discrepancies)
- Not necessarily needed for G and AT (compensation of gain and attenuation)

Calibration is either fully OFF or fully ON (all factors):

- If ON, the outputs from all detectors are always in the same scale
- Makes 100% sense for **BLD**_{Calib} and **ATT**_{Calib} (**calibration** of discrepancies)
- Not necessarily needed for G and AT (compensation of gain and attenuation)
 - Use case 1: we want to compare all detectors globally *need compensation*

Calibration is either fully OFF or fully ON (all factors):

- If ON, the outputs from all detectors are always in the same scale
- Makes 100% sense for **BLD**_{Calib} and **ATT**_{Calib} (calibration of discrepancies)
- Not necessarily needed for G and AT (compensation of gain and attenuation)

INSTRUMENTATION

TECHNOLOGIES

- Use case 1: we want to compare all detectors globally *need compensation*
- Use case 2: each detector "lives in its own world" - no need for comparison between them – *no need for compensation*

ONVOFF ONVOFF ONVOFF ONVOFF Acal = Araw X BLDCalib X G X AT X AT ON/OFF

Calibration is either fully OFF or fully ON (all factors):

- If ON, the outputs from all detectors are always in the same scale
- Makes 100% sense for BLD_{Calib} and ATT_{Calib} (calibration of discrepancies)
- Not necessarily needed for G and AT (compensation of gain and attenuation)
 - Use case 1: we want to compare all detectors globally *need compensation*
 - Use case 2: each detector "lives in its own world" - no need for comparison between them – *no need for compensation*

CONTENTS

- Introduction:
 Deem leases and hear lease mer
 - Beam losses and beam loss monitors
 - LIBERA BLM and BLD instruments
- Non-idealities and calibration
 - PMT calibration
 - Detector gain compensation
 - Attenuators cascade error
 - Individual factors switches.
- Radiation source calibration

CALIBRATION: radiation source: *currently verifying*

- PMTs (main source of inconsistency): tested and calibrated at I-Tech
- Scintillator: tested with cosmic background, not calibrated (because most of discrepancy comes from PMTs)

CALIBRATION: radiation source: currently verifying

- PMTs (main source of inconsistency): tested and calibrated at I-Tech
- Scintillator: tested with cosmic background, not calibrated (because mos¹ of discrepancy comes from PMTs)

"Classroom" radiation source:

Once the calibration scheme is validated:

- Could provide complete system calibration at I -Tech
- Offered as an extra service

	anode luminous sensitivity (A/Im)	proposed BLDCalib factor (PMT only)	Cs-137 0.662 MeV from histogram [ADC counts]	Proposed BLDCalib (based on Cs-137)
REF	500	100	7001	100
1	189	286	2414	290
2	124	471	1521	460
3	612	81	7600	92

Co-60

333 key GAMMA

CONCLUSION

- Beam loss monitoring Libera BLM and Libera BLD
- Calibration:
 - Calibration of PMTs: in factory
 - Attenuators non-linearity: factory default
 - Gain control: continuous function
 - Individual factors: on/off switches
 - Radiation source: full system calibration in the future

QUESTIONS FOR THE AUDIENCE

- How do you use LIBERA BLM + BLD?
 - Raw data/buffers/counting?
 - Fast/slow losses?
 - Interesting results?
- Calibration experience?
 - UV LED vs radiation source?
- Ideas for new functionalities?
- Problems?

Thank you!

<u>www.i-tech.si</u>

		•							
•		•		•		•	•	•	•
•	•	•	•	•	•	•	•	•	•

NSTRUMENTATION TECHNOLOGIES

Extra slide: processing functionalities

Full processing scheme

Built-in fast signal processing:

- Input -> analogue front end -> ADC
- Outputs:
 - Raw ADC buffer
 - Offset removal, SUM, INT, AVG buffers
 - Slow acquisition stream human timescale
 - Loss counting modes

INSTRUMENTATION

TECHNOLOGIES

Extra slide: processing and measurement examples

Extra slide: exponential gain mechanism

"a" is the same for all PMT's: Tested experimentally, but it also makes sense because if gain control is described with Out = A0 * exp(a * Vgc), a represents the exponential gain mechanism and A0 is just a factor that scales the input value.

