Data model, EPICS 7 and Bluesky

P. Schnizer et al.

Motivation

Steps towards an integrated approach

What's brewing

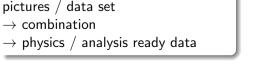
Conclusion

Opportunities arising from EPICS 7, Ophyd and Bluesky Integration of Libera Instruments

Pierre Schnizer, Waheedullah Sulaiman Khail, Günther Rehm

Helmholtz-Zentrum Berlin (HZB), Germany

17. April 2024


Beam position \leftrightarrow orbit

Galopp: horse airborne

- $\blacktriangleright \text{ no film} \rightarrow \text{cameras sequence}$
- ► horse: triggers
- combined \rightarrow result: horse airborne

Orbit

- beam position monitor \rightarrow position (vs. time)
- tagged by turn
- ► combination → physics ready data = orbit → start of analysis

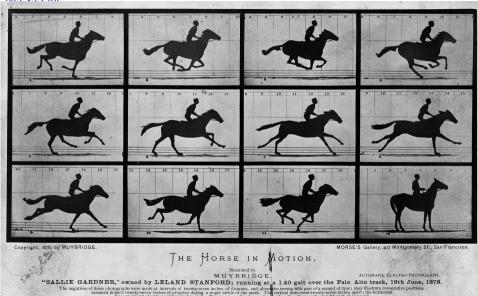
THE HORSE IN MOTION.

Common

Data model, EPICS 7 and Bluesky

P. Schnizer et al.

Motivation


Historic example What's a beam position monitor

Steps towards an integrated approach

What's brewing

$\mathsf{Beam}\ \mathsf{position}\ \leftrightarrow\ \mathsf{orbit}$

Pixel vs I ine

Data model, EPICS 7 and Bluesky

> P. Schnizer et al.

Motivation

Historic example What's a beam position monitor

Steps towards an integrated approach

What's brewing

Beam position \leftrightarrow orbit Pixel vs Line

Galopp: horse airborne

- $\blacktriangleright \text{ no film} \rightarrow \text{cameras sequence}$
- horse: triggers
- combined \rightarrow result: horse airborne

Data model, EPICS 7 and Bluesky

P. Schnizer et al.

Motivation

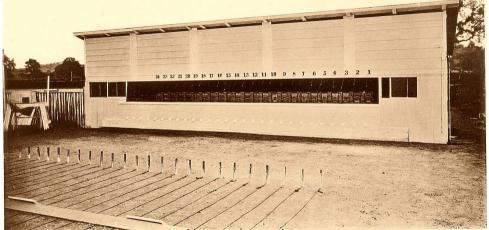
Historic example What's a beam position monitor

Steps towards an integrated approach

What's brewing

Conclusion

Orbit


- beam position monitor \rightarrow position (vs. time)
- tagged by turn
- combination \rightarrow physics ready data = orbit \rightarrow start of analysis

Common

- pictures $/\mbox{ data set}$
- ightarrow combination
- \rightarrow physics / analysis ready data

$\mathsf{Beam}\ \mathsf{position}\ \leftrightarrow\ \mathsf{orbit}$

Pixel vs Line

Data model, EPICS 7 and Bluesky

P. Schnizer et al.

Motivation

Historic example What's a beam position monitor

Steps towards an integrated approach

What's brewing

$\mathsf{Beam}\ \mathsf{position}\ \leftrightarrow\ \mathsf{orbit}$

Pixel vs I ine

Data model, EPICS 7 and Bluesky

P. Schnizer et al.

Motivation

Historic example What's a beam

Steps towards an integrated approach

What's brewing

Beam position monitor: a different view

What's a beam position monitor? A Theory of Forms view Stroboscope flashed at it properly Optics a little peace of paper placed in vacuum Postion sensitve device voltages \rightarrow triggered Beam one of the locations (along the ring). periodically updated, \rightarrow "line camera" Control regulation input

When is a beam position monitor useful?

- provides reliable data
- consistent with other devices in family

fast

Feedback info

- e.g. orbit stabilsation
- \blacktriangleright \rightarrow machine learning
- \blacktriangleright \rightarrow streaming approach

Data model, EPICS 7 and Bluesky

P. Schnizer et al.

Motivation

Historic example

What's a beam position monitor

Steps towards an integrated approach

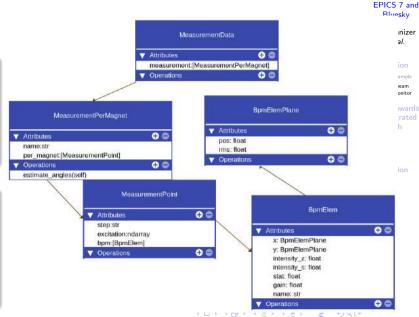
What's brewing

BPM data models

Simplify usage

Definition

 intuitve schema of used data


uses:

sub data modelsprimitive types

Examples

- BBA (see right)
- "single shot BBA"

► → BPM / Orbit data: "pouring in", reactions happening

Data model.

Steps towards an integrated approach

Data model, EPICS 7 and Bluesky

P. Schnizer et al.

Motivation

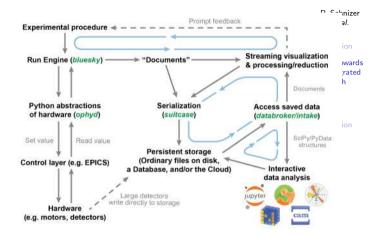
Steps towards an integrated approach

What's brewing

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- beam position monitors
 - "atomic data": positions (x, y), time count
 - ▶ atomic within EPICS control system: v3: vector, v7: normative types
- ▶ data combiner: collector, combiner, accumulator, data update \rightarrow focus on consistency by time stamp \rightarrow provide data when available
- line camera, orbit: combined data: input to regulation algorithms
- \blacktriangleright convienient data taking \rightarrow stabilisation beyond (electron) beam
- \blacktriangleright machine / reinforcement learning / streaming \rightarrow "new kid on the block"


High level implementation, bluesky

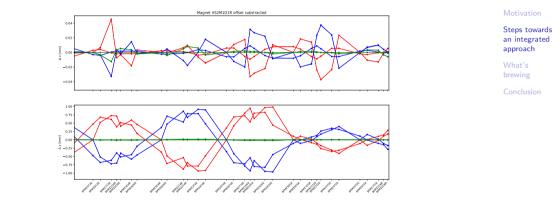
Data model

- Id
- ► Pay load: x, y,...

Motivation

- data model \rightarrow control system
- consistent in: control system, data processing, storage, database
- access by name

Data model, EPICS 7 and Bluesky


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Does one need it?

Well not absolutly but makes life more easier

Data model, EPICS 7 and Bluesky

P. Schnizer et al.

Fit of steerer response: bpm indices: model ↔ machine off by one Compare: polarity meter for magnets

What's brewing

P. Schnizer et al.

Motivation

Steps towards an integrated approach

What's brewing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Learning to build IOC's: thx to virtual box, podman image (v 3.24)
- ▶ Towards EPICS 7 \rightarrow pvacess based, combined on spark box, dedicated records \rightarrow consistent data delivery
- \blacktriangleright \rightarrow delay in data delivery: (ca monitor client time stamps)
- based on id: bpm data combiner: now reliable, not mixed of network delays ...
- ▶ qsrv2 as possible solution (Thx. Heinz Junkes) \rightarrow work in progress

P. Schnizer et al.

Motivation

Steps towards an integrated approach

What's brewing

Conclusion

- \blacktriangleright libera IOC: combine data to vec \rightarrow identifier, sort data
- ► towards EPCIS V7 → represent data model → consitent data model: control system, measurement, analysis
- data model: supports combination: from single pixel to line camera
- data model: simplifies usage: towards integrated facility stabilisation?