

Extending the Capabilities of the
Transverse Multibunch Feedback

Processor at Diamond

Michael Abbott, Diamond Light Source
Libera Workshop 2014

10th April 2014

TMBF in Context

Storage Ring
EBPM
button
block

Striplines

Hybrid

A B C D

Y

Power Amplifier

Power Amplifier

YX

TMBF Front EndMachine RF

Libera TMBF (X)

Libera TMBF (Y)

X Σ Q

TMBF Processing Framework
● Button pickups for ABCD RF signals
● RF hybrids convert to X & Y
● Libera TMBF front end for signal conditioning
● 4 x 125 Ms/s 14-bit ADC in Libera TMBF
● FPGA performs processing and control
● 1 x 500 Ms/s 14-bit DAC in Libera TMBF
● Power Amplifier drives striplines to couple back

to stored beam

Xilinx Virtex-II Pro FPGA

Libera TMBF

ADC DAC

128 MB
DDR
RAM

DLS
FPGA
Code

i-Tech FPGA framework

XScale ARM SoC
64 MB RAM
32 MB Flash

100 Mbit
Ethernet

Triggers

4 x 125 Ms/s
14 bit / sample

500 Ms/s
14 bit / sample

4 x 14

TMBF Applications

● Instability damping: simple tuned FIR to reverse
phase for negative feedback. Works well in
part due to very sharp resonance of beam at
machine tune frequency.

● Tune measurement by tune excitation and
detection

● Machine physics investigations: probing
instabilities

Top Level EPICS Control

New TMBF Capabilities

● Bunch-by-bunch control of filter, output, gain.
● Three output sources: FIR, two NCOs
● Programmable sequencer
● Tune following PLL
● Output pre-emphasis filter, input compensation

to come
● 2ns resolution triggers and synchronisation
● Compensation for all offsets and delays

Architecture and Implementation

● Split between EPICS IOC (written in C) and
FPGA (written in System Verilog)

● Offset and delay compensation in software
where possible: 19 delay parameters
automatically measured and compensated

● Libera platform provides SBC, DDR RAM, ADC,
DAC. Everything else in DLS code

19 Compensated Delays

DDR readout delays
DDR_ADC_DELAY = 230
DDR_FIR_DELAY = 1
DDR_RAW_DAC_DELAY = 5
DDR_DAC_DELAY = 10

Buffer trigger delays
BUF_ADC_DELAY = 229
BUF_FIR_DELAY = 0
BUF_DAC_DELAY = 9

MinMax buffer delays
MINMAX_ADC_DELAY = 228
MINMAX_DAC_DELAY = 8

Bunch selection offsets
BUNCH_FIR_OFFSET = 228
BUNCH_GAIN_OFFSET = 0

Detector single bunch offsets and phase
skews
DET_ADC_OFFSET = 1
DET_FIR_OFFSET = 232

These two values represent actual phase
delays in bunches relative to an
aligned single turn.
DET_ADC_DELAY = 0
DET_FIR_DELAY = 12

Tune following delays
FTUN_ADC_OFFSET = 3
FTUN_FIR_OFFSET = 0
FTUN_ADC_DELAY = 928
FTUN_FIR_DELAY = 940

All measured automatically when testing a new FPGA version

FPGA System Overview

input FIRADC DACoutput

bunch
control

capturesequencer
&

detector

tune PLL

FIR

NCO1

NCO2

FIR

FIR

ADC

ADC

DAC

FIR

ADC

IQ

Loopback for Debug

Data Capture

min/max
ADC

min/max
DAC

DAC

FIR

ADC

IQ

DDR
RAM

64M x 16

block
RAM

16k x 16 x 2

2 of 3

Output Control

pre-
emphasis

FIR

Off

FIR

NCO1

FIR+NCO1

NCO2

FIR+NCO2

NCO1+NCO2

FIR+NCO1+NCO2

+

+

+

+

FIR

NCO1

NCO2

0

Output
Select

× delay:
0-935

Output
Gain

Bunch by bunch
control

DAC

capture

Overflow
Detect

A Fragment of FPGA Code

// DAC selection input multiplexer. The intermediate selection is 16 bits wide
// so we can detect overflow when adding up to three 14 bit values.
logic [7:0] [15:0] dac_out_mux = 0;
always_ff @(posedge adc_clk_i) begin
 dac_out_mux[0] <= 0;
 dac_out_mux[1] <= signed'(fir_dat_i);
 dac_out_mux[2] <= signed'(hom_0_dat_i);
 dac_out_mux[3] <= signed'(hom_0_dat_i) + signed'(fir_dat_i);
 dac_out_mux[4] <= signed'(hom_1_dat_i);
 dac_out_mux[5] <= signed'(hom_1_dat_i) + signed'(fir_dat_i);
 dac_out_mux[6] <= signed'(hom_1_dat_i) + signed'(hom_0_dat_i);
 dac_out_mux[7] <=
 signed'(hom_1_dat_i) + signed'(hom_0_dat_i) + signed'(fir_dat_i);
end
wire [15:0] dac_out_sel = dac_out_mux[out_mux_sel_i];

// Latch final result and detect overflow
logic [13:0] dac_mux_out = 0;
logic mux_overflow = 0;
always_ff @(posedge adc_clk_i) begin
 dac_mux_out <= dac_out_sel;
 mux_overflow <= ~&dac_out_sel[15:13] & |dac_out_sel[15:13];
end

Bunch by Bunch Control

● Different feedback on different bunches, helpful
for unusual fill patterns

● Precise control over tune sweeps (can measure
up to four channels at once)

● Low risk user time experiments on a single
bunch (nobody cares too much if we break one
bunch!)

Bunch Control

Bank select
from

sequencer

FIR select
(one of 4)

Output select
(8 options)

Output gain
(range ±1023)

Bunch counter,
advances
every
2ns

Current bunch
configuration

Sequencer selects one
of four bunch control
configurations.
Selected configuration
determines bunch by
bunch behaviour.

Bunch configuration:
for each of 936
bunches selects:
● FIR (2 bits)
● output (3 bits)
● gain (11 bits).

Tune Measurement

● Excite system under test with fixed frequency
sin wave

● Measure response by mixing with original
excitation: use both phases to get IQ response

● Sweep excitation frequency to get response
over a frequency range

device
under
test

∿ detector IQ

cos,sin

cos

Detector Features

● Blanking signal. External signal during injection
to suspend detector during injection to avoid
spurious noise.

● Window. Windowing sine wave that doesn't fit
into detector window controls leakage from
adjacent frequencies:

⨯

Tune Measurement Screen

NCO

DETECTOR

Sequencer and Detector

gain

NCO

sequencer

FIR Σ
×

×

I

Q

IQ

NCO1gain

cos

ADC

sin

×

write IQ

window

frequency

bank
select

blanking
event

gain

Programmable Sequencer

For tune sweeps and timed feedback control
experiments. For up to 7 sequenced states can
select:
● Bunch configuration from one of four selections
● Frequency sweep for NCO
● Optional IQ data capture for sweep response
● Duration of state

D1 turns: detector activeH1 Turns

Sequencer Programme

StateN … State1State0 State0

N state programme

Dwell0

COUNT = C1
DWELL = D1
HOLDOFF = H1

Dwell1 ... DwellC-1

f1 f1+δf1 f0+(C1-1)δf1

H1+D1 Turns

Start on trigger

detector window

Sequencer Applications

● Tune sweep: one extra state with sweep
● Complex machine investigations. For example,

grow/damp exploration of unstable modes, can
perform the following experiment:
– Running in feedback with standard feedback

– Turn feedback off, excite one mode for 100 turns

– Wait for natural growth of mode, eg 1000 turns

– Run an alternate feedback filter for 1000 turns

– Restore standard feedback, capture 1000 turns

Implementing Grow/Damp

State # FIR Output Duration Dwell time Bank #

0 Standard FIR - - 0

4 - Sweep NCO 100 1 1

3 - Off 1000 1 2

2 Alternate FIR 1000 1 3

1 Standard FIR 1000 1 0

0 Standard FIR - - 0

Here we use four out of seven available sequencer states, two of four
available feedback filters, and all four available bunch control banks.

The result of this experiment is 3100 IQ sample points.

Can also simultaneously capture turn by turn data into the fast DDR
buffer if desired, have room for up to 35,000 turns in the buffer, but
readout is relatively slow, around 1,200 turns per second.

Graph of a Grow/Damp Experiment
Excite at tune and

selected mode
for 500 turns

Feedback off,
observe natural

damping

Feedback
restored

Low Level Control Screens

Tune Measurement
Peak response

at tune frequency

Synchrotron
sidebands

Note rapid phase change
when sweeping through

peak of resonance

Tune Phase Locked Loop

● Take advantage of rapid phase change through
tune frequency peak

● Measure phase at, eg, 2.6 kHz (every 200 turns)
● Run simple controller to track frequency to keep

phase at target value
● Result is high update rate tune measurement
● Can quickly measure tune width by stepping

phase through ±45°

PI controller

Tune Phase Locked Loop

detector

NCO

FIR

ADC

CORDIC
IQ

NCO2

buffer

−
phase reference

phase

reference
frequency

+

cos,sin

Σ

phase
error

×× KIKP

+

frequency correction

IIR
2−N

1−(1−2−N
) z−1

Tune PLL Screen

BBA orbit changes
cause changes in tune

First PLL Tune Measurements

Mains (50 Hz, 100 Hz)

Controller mistune?

3, 6, 9, 12 Hz, etc –
mystery signal, not seen
before this measurement

Broadband low frequency,
comes and goes.
Ground motion?

Controller rolloff

Long term 71.2 Hz signal
Believe comes from one
steerer, have seen this
signal for several years!

5, 10, 15 Hz, etc – injection?

Output Pre-Emphasis

● Loss of gain at high frequencies from DAC,
Amplifier, ADC

● Can partially compensate with 3-tap FIR in DAC
output

● Will also add 3-tap FIR to ADC input to
compensate ADC high frequency droop

Closed Loop Gain Compensation
Filter coefficients: +1.323 -0.485 +0.162

2ns Trigger Synchronisation

● FPGA runs with 8ns cycle: 4 machine bunches
per tick

● Need to identify which bunch is synchronous
with incoming trigger

● Need to identify trigger edge with 2ns precision

DDR
D-DDR

Discovering Trigger Edge

Trigger
2φ

2φ

φ

φ

φ

φ

φ

φ

φ

φ

Trigger
with phase
detect

A

B

C

D

0 0 0 0

Here we see ABCD go from
0000 to 0011 and can infer
precise phase of trigger edge

A B C D

0 0 1 1

A B C D

φ φ φ

FPGA from a software perspective

● You need a helpful FPGA expert! Isa's help and
advice was invaluable

● Completely different mind set: everything
happens at once, not in sequence

● Open tools are practically nonexistent, entire
philosophy is very bound to vendors

● System Verilog a horribly flawed language
● Timing constraints always a perpetual problem
● Solve problems with more pipelining!

Conclusions

● Developing driver software and FPGA together:
very satisfying and flexible

● Many many thanks to:
– Isa Uzun for first version of FPGA and lots of advice

– Guenther Rehm for detailed steering, guidance,
many ideas, and in-depth evaluation

– Graham Naylor for initial FPGA design

– I-Tech for the Libera TMBF platform

