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TMBF Processing Framework
● Button pickups for ABCD RF signals
● RF hybrids convert to X & Y
● Libera TMBF front end for signal conditioning
● 4 x 125 Ms/s 14-bit ADC in Libera TMBF
● FPGA performs processing and control
● 1 x 500 Ms/s 14-bit DAC in Libera TMBF
● Power Amplifier drives striplines to couple back 

to stored beam
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TMBF Applications

● Instability damping: simple tuned FIR to reverse 
phase for negative feedback.  Works well in 
part due to very sharp resonance of beam at 
machine tune frequency.

● Tune measurement by tune excitation and 
detection

● Machine physics investigations: probing 
instabilities



  

Top Level EPICS Control



  

New TMBF Capabilities

● Bunch-by-bunch control of filter, output, gain.
● Three output sources: FIR, two NCOs
● Programmable sequencer
● Tune following PLL
● Output pre-emphasis filter, input compensation 

to come
● 2ns resolution triggers and synchronisation
● Compensation for all offsets and delays



  

Architecture and Implementation

● Split between EPICS IOC (written in C) and 
FPGA (written in System Verilog)

● Offset and delay compensation in software 
where possible: 19 delay parameters 
automatically measured and compensated

● Libera platform provides SBC, DDR RAM, ADC, 
DAC.  Everything else in DLS code



  

19 Compensated Delays

# DDR readout delays
DDR_ADC_DELAY = 230
DDR_FIR_DELAY = 1
DDR_RAW_DAC_DELAY = 5
DDR_DAC_DELAY = 10

# Buffer trigger delays
BUF_ADC_DELAY = 229
BUF_FIR_DELAY = 0
BUF_DAC_DELAY = 9

# MinMax buffer delays
MINMAX_ADC_DELAY = 228
MINMAX_DAC_DELAY = 8

# Bunch selection offsets
BUNCH_FIR_OFFSET = 228
BUNCH_GAIN_OFFSET = 0

# Detector single bunch offsets and phase
# skews
DET_ADC_OFFSET = 1
DET_FIR_OFFSET = 232

# These two values represent actual phase
# delays in bunches relative to an
# aligned single turn.
DET_ADC_DELAY = 0
DET_FIR_DELAY = 12

# Tune following delays
FTUN_ADC_OFFSET = 3
FTUN_FIR_OFFSET = 0
FTUN_ADC_DELAY = 928
FTUN_FIR_DELAY = 940

All measured automatically when testing a new FPGA version



  

FPGA System Overview
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Data Capture
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Output Control
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A Fragment of FPGA Code

// DAC selection input multiplexer.  The intermediate selection is 16 bits wide
// so we can detect overflow when adding up to three 14 bit values.
logic [7:0] [15:0] dac_out_mux = 0;
always_ff @(posedge adc_clk_i) begin
    dac_out_mux[0] <= 0;
    dac_out_mux[1] <= signed'(fir_dat_i);
    dac_out_mux[2] <= signed'(hom_0_dat_i);
    dac_out_mux[3] <= signed'(hom_0_dat_i) + signed'(fir_dat_i);
    dac_out_mux[4] <= signed'(hom_1_dat_i);
    dac_out_mux[5] <= signed'(hom_1_dat_i) + signed'(fir_dat_i);
    dac_out_mux[6] <= signed'(hom_1_dat_i) + signed'(hom_0_dat_i);
    dac_out_mux[7] <=
        signed'(hom_1_dat_i) + signed'(hom_0_dat_i) + signed'(fir_dat_i);
end
wire [15:0] dac_out_sel = dac_out_mux[out_mux_sel_i];

// Latch final result and detect overflow
logic [13:0] dac_mux_out = 0;
logic mux_overflow = 0;
always_ff @(posedge adc_clk_i) begin
    dac_mux_out <= dac_out_sel;
    mux_overflow <= ~&dac_out_sel[15:13] & |dac_out_sel[15:13];
end



  

Bunch by Bunch Control

● Different feedback on different bunches, helpful 
for unusual fill patterns

● Precise control over tune sweeps (can measure 
up to four channels at once)

● Low risk user time experiments on a single 
bunch (nobody cares too much if we break one 
bunch!)



  

Bunch Control
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Tune Measurement

● Excite system under test with fixed frequency 
sin wave

● Measure response by mixing with original 
excitation: use both phases to get IQ response

● Sweep excitation frequency to get response 
over a frequency range
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Detector Features

● Blanking signal.  External signal during injection 
to suspend detector during injection to avoid 
spurious noise.

● Window.  Windowing sine wave that doesn't fit 
into detector window controls leakage from 
adjacent frequencies:

⨯



  

Tune Measurement Screen
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Programmable Sequencer

For tune sweeps and timed feedback control 
experiments.  For up to 7 sequenced states can 
select:
● Bunch configuration from one of four selections
● Frequency sweep for NCO
● Optional IQ data capture for sweep response
● Duration of state
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Sequencer Applications

● Tune sweep: one extra state with sweep
● Complex machine investigations.  For example, 

grow/damp exploration of unstable modes, can 
perform the following experiment:
– Running in feedback with standard feedback

– Turn feedback off, excite one mode for 100 turns

– Wait for natural growth of mode, eg 1000 turns

– Run an alternate feedback filter for 1000 turns

– Restore standard feedback, capture 1000 turns



  

Implementing Grow/Damp

State # FIR Output Duration Dwell time Bank #

0 Standard FIR - - 0

4 - Sweep NCO 100 1 1

3 - Off 1000 1 2

2 Alternate FIR 1000 1 3

1 Standard FIR 1000 1 0

0 Standard FIR - - 0

Here we use four out of seven available sequencer states, two of four 
available feedback filters, and all four available bunch control banks.

The result of this experiment is 3100 IQ sample points.

Can also simultaneously capture turn by turn data into the fast DDR 
buffer if desired, have room for up to 35,000 turns in the buffer, but 
readout is relatively slow, around 1,200 turns per second.
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Low Level Control Screens
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Tune Phase Locked Loop

● Take advantage of rapid phase change through 
tune frequency peak

● Measure phase at, eg, 2.6 kHz (every 200 turns)
● Run simple controller to track frequency to keep 

phase at target value
● Result is high update rate tune measurement
● Can quickly measure tune width by stepping 

phase through ±45°
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Tune PLL Screen
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First PLL Tune Measurements
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Output Pre-Emphasis

● Loss of gain at high frequencies from DAC, 
Amplifier, ADC

● Can partially compensate with 3-tap FIR in DAC 
output

● Will also add 3-tap FIR to ADC input to 
compensate ADC high frequency droop



  

Closed Loop Gain Compensation
Filter coefficients: +1.323 -0.485 +0.162



  

2ns Trigger Synchronisation

● FPGA runs with 8ns cycle: 4 machine bunches 
per tick

● Need to identify which bunch is synchronous 
with incoming trigger

● Need to identify trigger edge with 2ns precision
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FPGA from a software perspective

● You need a helpful FPGA expert!  Isa's help and 
advice was invaluable

● Completely different mind set: everything 
happens at once, not in sequence

● Open tools are practically nonexistent, entire 
philosophy is very bound to vendors

● System Verilog a horribly flawed language
● Timing constraints always a perpetual problem
● Solve problems with more pipelining!



  

Conclusions

● Developing driver software and FPGA together: 
very satisfying and flexible

● Many many thanks to:
– Isa Uzun for first version of FPGA and lots of advice

– Guenther Rehm for detailed steering, guidance, 
many ideas, and in-depth evaluation

– Graham Naylor for initial FPGA design

– I-Tech for the Libera TMBF platform


