MEASUREMENTS AT CNAO WITH THE LIBERA SPARK "HR" PROTOTYPE

Matjaz Znidarcic, Libera Workshop, May 2018, Solkan

www.i-tech.si

Content

- Motivation
- CNAO facility and existing BPM system
- Libera Spark "HR" BPM
- Test bench and beam tests at CNAO
- Data analysis
- Results

Motivation

Libera entering in medical field - Proton/Carbon radiation

therapy

- Libera Hadron BPM proven and in usage at several circular machines around the globe
- Medical machines requirements
 - Simple to use
 - Usually slow monitoring and bunch-by-bunch data is needed
 - Quiet instruments
 - No maintenance
- CNAO medical facility
 - Analise data at bunch-by-bunch rate
 - Tune frequency

Libera

Libera Spark "HR" PROTOTYPE

www.i-tech.si

The National Center of Oncological Hadrontherapy (CNAO)

CNAO in Pavia is one of the first centers for hadron therapy in Europe, treating patients since 2011.

- Synchrotron ring with circumference 76.84 m
- 2 Sources Protons and Carbon IONs
 - Protons extracted at 60 250 MeV
 - Carbon IONs extracted at 120 400 MeV
- 3 horizontal + 1 vertical treatment line
 - Complex cases of cancer and pediatric tumors

CNAO BPM system

- Modular BPM system
 - CNAO front end calculates Sigma and Delta
 - Back end calculates analog division between integral of Delta and integral of Sigma
 - PXI digitizer
- Position delivered at fixed rate 1 kHz

Libera

Libera Spark "HR" prototype

Direct acquisition of BPM pickup signals

- 35 MHz low pass front end
- Sampling @ 125 MHz
- 8 Msamples data buffer / Off-line DSP
- · Position calculated at Bunch-by-bunch rate

Signal FWHM = 100 ns

	Spark
Dimensions (H x W x D) mm	44 x 210 x 210
A/D conversion	125 MHz / 14 bit
FPGA / CPU	Zynq-7020, ARM Cortex-A9
Cooling	Passive
Power supply	PoE
Input gain / attenuation	Programmable, 31 dB
Temperature stability	0.3 micrometer / °C
Long term stability [8 h]	< 0.3 micrometer (kx = ky = 10 mm)
Data processing	Bunch-by-bunch (Offline)

DSO was

connected

front end

to the CNAO

CNAO and Libera BPM systems

0.2945

0.295

0.2955

0.296

0.2965

0.297

32850 32900 32950 33000 33050 33100 33150

Test bench

Shoe-box pickup

- 5 wires 5 different transverse positions (not a standard coordinate table)
 - Mechanical accuracy problems
 - Connectors + cables connection
- · Sine wave injected into each wire
 - Amplitude and frequency was changing
- Geometrical coefficients for both systems

Libera

Beam tests

Instruments placed in a high dispersion region

- Single bunch (one bucket) 0.5 3 MHz
- Only horizontal plane measured (2 channels)
- Signal spitted to both systems
 - Difference in the impedance (10 MOhm vs. 50 Ohm attenuators added)
- 1 ms ADC data chunks acquired
 - Spark HR @ 125 MHz
 - CNAO front end (Lecroy DSO @ 100 MHz)

Libera

Measurements (data acquisitions)

PROTONS and CARBON IONS

- Measurements during injection (micro bunches)
 - 1 us of beam at 500 kHz
- · Measurements during beam acceleration
- Measurements at flat-top with fixed energy before extraction
 - Different energies constant frequency
- Measurements at flat-top changing the LLRF position set point
 - Stable beam (3 MHz)
 - The beam was displaced in 5 different positions spaced by ~5 mm

Data analysis (horizontal plane)

CNAO algorithm

Input = Delta / Sigma

- Integration of Sigma and Delta
- Bunch signal extraction (finding the two local minimals before and after the bunch peak)
- Offset subtraction
- For each bunch the integral of Sigma and Delta are computed using a fixed threshold
- Position calculation

$$X = K_x \frac{\Delta}{\Sigma} + X_{OFFSET}$$

Libera Bunch-by-bunch algorithm (implemented in Libera Hadron)

Input = Pickup signal L, Pickup signal R

- Useful data extraction (from the ADC data from individual channels, the samples belonging to individual bunches are identified)
- For each channel and for each bunch, the amplitude is calculated with sum-of-squares formula

$$V_{A} = \sqrt{\sum_{PROC WIN. END}^{PROC WIN. END}} V_{C} = \sqrt{\sum_{PROC WIN. START}^{PROC WIN. END}} V_{C}$$

• Position calculation

$$X = K_{X} \frac{(V_{A}^{'} - V_{C}^{'})}{(V_{A}^{'} + V_{C}^{'})} + X_{OFFSET}$$

Data analysis - CNAO front end

Sigma (red) and Delta (blue) acquired directly from the CNAO front end

CNAO algorithm -Integrated signal

Data analysis - Libera Spark

Libera bunch-by-bunch algorithm – Extracted bunches

CNAO algorithm -Integrated signal

Channels Left (red) and Right (blue) acquired with Spark HR

Results I (Protons)

- Standard deviation of the instruments . differs for a factor of ten
- Libera is "all in one" low noise system ٠
- CNAO front end cabling + • + oscilloscope.
- Signal level provided to the Spark HR ٠ instrument was low

Standard deviation

Set beam position [mm]	CNAO front end CNAO DSP [mm]	Libera Spark HR CNAO DSP [mm]	Libera Spark HR Libera DSP [mm]
- 35	2.21	0.24	0.14
- 30	2.18	0.23	0.10
- 25	1.99	0.21	0.12
- 20	1.79	0.22	0.11
- 15	1.79	0.19	0.08

-5

-10

-30

-35

-40

0

200

400

800

600

1000

bunch

1200

1400

1600

2000

1800

Results II (Protons)

- Positions achieved with Spark HR and CNAO front end are slightly different. The reconstructed position after rescaling is equal.
 - Signal splitting and not equal cables

Set beam position [mm]	CNAO front end CNAO DSP [mm]	Libera Spark HR CNAO DSP [mm]	Libera Spark HR Libera DSP [mm]
- 35	-32.91	-31.66	-29.06
- 30	-27.79	-26.81	-24.68
- 25	-22.52	-22.02	-20.31
- 20	-17.63	-17.49	-16.37
- 15	-12.5	-12.62	-11.67

Results – Carbon IONs

Same tests repeated with Carbon IONs

- Small signals
- Due to DSO wrong settings, tests were repeated later

-16· -18·

-20

-22 · -24 · -26 · -28 · -30 · -32 ·

-36

-38

-40

set position (mm)

reconstructed position (mm)

- Libera + splitter + CNAO front end
- CNAO front end
- · Measurements can not be directly compared
- Same slope

www.i-tech.si

Sum

Measurement during acceleration – Protons

Horizontal Position (+ 8 ms)

Measurements right before the extraction – Protons

- 3 MHz constant beam circulates in the machine at fixed energy extracted to the patient ٠
 - < 10 % fluctuation in the amplitude related to the synchrotron fluctuations i.e. bunch shape fluctuation ٠
 - Integral of SUM i.e. accelerated charge is constant = constant dose to the patient •

196 MeV beam

Libera

2500

2500

Conclusion

- The tests at CNAO provided clean results with a turn-by-turn beam position resolution of hundred micrometers, with still margin for improvement.
- The idea of using Libera Spark as a BPM readout system for hadron therapy machines has been confirmed.
- Implementation of the DSP in the FPGA and further tests will follow

