On ramp closed orbit correction in SIS18 synchrotron of GSI

Sajjad Hussain Mirza^{1,2}

Contributors: Dr. Rahul Singh¹ Dr. Peter Forck¹

¹Beam Instrumentation Group, GSI Helmholtz Centre for Heavy Ion Research

GSI, Darmstadt

²TEMF, TU, Darmstadt

Germany

Outline

- 1. Introduction to GSI and FAIR synchrotrons
- 2. Upgradation of SIS18 ring to integrate into FAIR
- 3. General discussion on closed orbit correction
 - 1. Singular value decomposition (SVD)
 - 2. DFT based decomposition (a new approach)
- 4. General requirements for SIS18 (comparison to light sources)
- 5. Closed orbit perturbations at SIS18
- 6. Machine model mismatch at SIS18 (correctability and stability)
 - 1. On-ramp model drift
 - 2. Intensity dependent tune shift and beta beating
- 7. System identification
- 8. Outlook

GSI: brief introduction

Heavy ion research facility,

member of Helmholtz Association (the largest German science organization)

Facilities include:

- Linear accelerator UNILAC
- Heavy Ion synchrotron SIS18
- Experimental Storage ring ESR
- Fragment separator FRS
- High energy laser Phelix
- Several large spectrometers and detector systems
- Medical radiation equipment for cancer treatment (up to 2005)

Six new elements discovered at GSI

Bohrium (107) Meitnerium (109) Roentgenium (111) Hassium (108) Darmstadtium (110) Copernicium (112)

Research Areas include:

Nuclear Physics Particle Physics Plasma Physics Biophysics and medicine Material research

3

5/23/2018

FAIR: An extension of GSI

(under construction)

Main purpose:

- High intensity pulsed
 ion beams
- Secondary beams of rare-isotopes
- Proton beams into antiproton beams

S.H. Mirza

- Lower charge state to avoid space charge effects at high intensities
- Vacuum improvements
- More control on beam quality to deliver more intensity to SIS100 (Closed orbit care)

5/23/2018

4

Synchrotrons: SIS18 and SIS100

(FAIR parameters)

Parameter/Ring	SIS18	SIS100
Circumference (m)	218	1084
Magnetic rigidity (Tm)	18	100
Injection energy	11 MeV/u for U ²⁸⁺	200 MeV/u for U ²⁸⁺
	(today U ⁷³⁺) 70 MeV/u for protons	4.5 GeV/u for protons
Extraction energy	200 MeV/u for U^{28+}	2.7 GeV/u for U^{28+}
	<pre>(today ~800 MeV/u) 4.5 GeV/u for protons</pre>	29 GeV/u for protons
Beam intensity	1.5. 10 ¹¹ ions	5. 10 ¹¹ ions
(per pulse)	$(today 4 \times 10^9)$	1 10 ¹³ motore
	5. 10 ¹² protons	4. 10 ¹⁹ protons
Magnets	Normal conducting	Super conducting
Ramp rate (max)	10 T/s (variable)	4 T/s
Rep. frequency (Hz)	2.7	0.7
Beam size	5-30 mm (MTI) (1 σ)	20-30 mm (1 <i>σ</i>)
5/23/2018		S.H. Mirza 5

Closed orbit feedback system

Closed orbit perturbation (distortion)

Single error perturbed orbit is

$$f(s) = \theta \frac{\sqrt{\beta(s_0)\beta(s)}}{2\sin(\pi Q_y)} \cos(|\mu(s) - \mu_{s0}| - \pi Q_y)$$

 θ is the kick provided by field error $\beta(s)$ is the beta function at kick location $\mu(s)$ is the phase advance Q is the tune of the machine

 $y_c(s) = \sum_{i=1}^N \theta_i \frac{\sqrt{\beta(s_i)\beta(s)}}{2\sin(\pi Q_y)} \cos(|\mu(s) - \mu_{si}| - \pi Qy)$

 $[\mathbf{Y}]_{m \times 1} = [R]_{m \times n} [\Theta]_{n \times 1}$

R is called the orbit response matrix

Orbit response matrix (ORM) based correction

Matrix containing proportionality constants can be calculated or measured separately

 $[\mathbf{Y}]_{m \times 1} = [R]_{m \times n} [\Theta]_{n \times 1}$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ \vdots \\ \vdots \\ Y_{m-1} \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & \dots & R_{1n} \\ R_{21} & R_{22} & R_{23} & \dots & R_{2n} \\ R_{31} & R_{32} & R_{33} & \dots & R_{3N} \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ R_{m-1,1} & R_{m-1,2} & R_{m-1,3} & \dots & R_{m-1,n} \\ R_{m1} & R_{m2} & R_{m3} & \dots & R_{mn} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \vdots \\ \vdots \\ \theta_{n-1} \end{bmatrix}$$

Then apply the negatives of the calculated corrector strengths $\begin{bmatrix} -\theta \\ -\theta \end{bmatrix}$

$$\begin{bmatrix} -\theta_1 \\ -\theta_2 \\ -\theta_3 \\ \cdot \\ \cdot \\ \cdot \\ -\theta_{n-1} \\ -\theta_n \end{bmatrix}$$

9

$$\begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \vdots \\ \vdots \\ \theta_{n-1} \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & \dots & R_{1n} \\ R_{21} & R_{22} & R_{23} & \dots & R_{2n} \\ R_{31} & R_{32} & R_{33} & \dots & R_{3N} \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ R_{m-1,1} & R_{m-1,2} & R_{m-1,3} & \dots & R_{m-1,n} \\ R_{m1} & R_{m2} & R_{m3} & \dots & R_{mn} \end{bmatrix} \begin{bmatrix} Y_{1} \\ Y_{2} \\ Y_{3} \\ \vdots \\ \vdots \\ Y_{m-1} \end{bmatrix}$$

- ORM is not always invertible (for example rectangular)
- 2. Calculated corrector values are beyond the corrector magnet range

SVD for ~ ill conditioned ORMs

S.H. Mirza

Y. Chung, "Closed orbit correction using singular value decomposition of the response matrix", (Argonne National Laboratory, IL, 1923)

Singular Value Decomposition (SVD)

$$R = USV^T$$

$$\begin{bmatrix} R_{11} & \cdots & R_{1n} \\ \vdots & \ddots & \vdots \\ R_{m1} & \cdots & R_{mn} \end{bmatrix} = \begin{bmatrix} U_{11} & \cdots & U_{1m} \\ \vdots & \ddots & \vdots \\ U_{m1} & \cdots & U_{mm} \end{bmatrix} \begin{bmatrix} s_1 & \cdots & 0 \\ \vdots & s_2 & \vdots \\ 0 & \cdots & s_n \end{bmatrix} \begin{bmatrix} V_{11} & \cdots & V_{1n} \\ \vdots & \ddots & \vdots \\ V_{n1} & \cdots & V_{nn} \end{bmatrix}$$

 s_i are called singular values arranged as $s_1 > s_2 > s_3 \dots > s_n$ U and V are orthogonal matrices such that

$$U^{-1} = U^T$$
 and $V^{-1} = V^T$

where the columns of U and V are the eigenvectors of RR^{T} and $R^{T}R$

Which helps to find inverse R^{-1} (if *R* is invertible) as

 $\begin{bmatrix} R_{11} & \cdots & R_{1n} \\ \vdots & \ddots & \vdots \\ R_{m1} & \cdots & R_{mn} \end{bmatrix}^{-1} \begin{bmatrix} V_{11} & \cdots & V_{1m} \\ \vdots & \ddots & \vdots \\ V_{m1} & \cdots & V_{mm} \end{bmatrix} \begin{bmatrix} 1/s_1 & \cdots & 0 \\ \vdots & 1/s_2 & \vdots \\ 0 & \cdots & 1/s_n \end{bmatrix} \begin{bmatrix} U_{11} & \cdots & U_{1n} \\ \vdots & \ddots & \vdots \\ U_{n1} & \cdots & U_{nn} \end{bmatrix}^T$

William H. Press, Numerical recipes; The art of scientific computing (2007) Cambridge university press

Pseudo-inverse

S.H. Mirza

10

Comparison to the state-of-the art realizations

(Light sources)

Parameter	State-of-the art (light sources)	SIS18
Stability criteria (vertical plane)	Less than 1 μ m (10% of beam size ~ 10 μ m)	Less than 1 mm (10% of beam size ~10 mm)
Bandwidth	~ 1 – 250 Hz	>600 Hz - 1 kHz
Sources	Mechanical vibrations /power supply ripples	Higher harmonics of PS ripples/ hysteresis
On-ramp correction	Not needed(?)	Primary plan
Lattice settings	Fixed	Systematic variation
Flexibility of operations	Electron beams Fixed energies Almost fixed intensities	Protons to heavy ions Variable beam intensities Variable beam energies
BPM failure/ malfunction	Less probability(?)	More probability due to high radiation
Beta beating	Lattice model more understood	Variable optics

Closed orbit perturbations in SIS18

5/23/2018

High Frequency ripples and bandwidth requirements

S. H. Kim. Calculation of pulsed kicker magnetic eld attenuation inside beam chambers. Technical Report LS-291, Advanced Proton Source, 2001.

5/23/2018

14

S.H. Mirza

SIS18 synchrotron's "machine model"

Exploiting the Circulant symmetry of SIS18

$$R = \begin{bmatrix} R_{1} & R_{2} & R_{3} & R_{4} & \cdots & R_{n} \\ R_{n} & R_{1} & R_{2} & R_{3} & \cdots & R_{n-1} \\ R_{n-1} & R_{n} & R_{1} & R_{2} & \cdots & R_{n-2} \\ R_{n-2} & R_{n-1} & R_{n} & R_{1} & \cdots & R_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ R_{2} & R_{3} & R_{4} & R_{5} & \cdots & R_{1} \end{bmatrix}$$

Inverse is straightforward
$$R^{-1} = F^{*}H^{-1}F$$
$$H^{-1} = \operatorname{diag}(\frac{1}{\sigma_{k}}), k=1...n$$

$$\sigma_{k} = \sigma_{rk} + j \sigma_{ik} = \sum_{n}^{N-1} R_{n} e^{-j2\pi k n/N}$$

$$R = \begin{bmatrix} F_{11} & \cdots & F_{1m} \\ \vdots & \ddots & \vdots \\ R_{m1} & \cdots & F_{mm} \end{bmatrix} \begin{bmatrix} \sigma_{1} & \cdots & 0 \\ \vdots & \sigma_{2} & \vdots \\ 0 & \cdots & \sigma_{n} \end{bmatrix} \begin{bmatrix} F_{11} & \cdots & F_{1n} \\ \vdots & \ddots & \vdots \\ F_{n1} & \cdots & F_{nn} \end{bmatrix}$$

Standard Fourier matrix
containing DFT modes
$$F_{k} = F_{kc} + jF_{ks} \qquad F_{ks} = \sin\left(\frac{2\pi km}{n} + \varphi_{k}\right)$$

16

G S

S.H. Mirza

Equivalence of SVD and DFT

Why to do SVD when Circulant symmetry exits?

17

S.H. Mirza

One quick application: Missing BPM scenario

One quick application: Missing BPM scenario

SIS18 machine model changes and uncertainties

SIS18 machine model changes and uncertainties

during the fast energy ramp at ELSA" in Proc. IPAC'10, Kyoto, Japan, 2010, paper MOPD085

5/23/2018

Effect of model mismatch on the orbit correction

$$[\mathbf{R}]_{m \times n} = \frac{\sqrt{\beta_m \beta_n}}{2 \sin(\pi Q)} \cos(\pi Q - |\mu_m - \mu_n|)$$

- If \mathbf{R} = actual machine model
 - **R'** = assumed model used to calculate the corrector strengths θ
 - $\Delta y_0 =$ initial perturbed orbit then
 - r_1 = the residual orbit after one iteration

$$r_{1} = \Delta y_{0} - \mathbf{R}\theta$$
$$r_{1} = \Delta y_{0} - \mathbf{R}\mathbf{R}'^{-1}\Delta y_{0}$$
$$r_{1} = (\mathbf{I} - \mathbf{R}\mathbf{R}'^{-1})\Delta y_{0}$$

The residual after n iterations becomes

$$r_n = \left(\mathbf{I} - \mathbf{R}\mathbf{R'}^{-1}\right)^n \Delta y_0$$

 $r_1 \propto$ the model mismatch

∝ n (number of iterations required for convergence)
 gives a hint of the correctability and stability criteria after n iterations

S.H. Mirza

If any Eigenvalue of $(I - RR'^{-1}) > 1$ closed correction after n iteration will lead to instability.

5/23/2018

Effect of model mismatch on the orbit correction (On-ramp model drift)

23

S.H. Mirza

Effect of model mismatch on the orbit correction (Tune shifts and beta beating)

R. Singh, "Tune measurement at GSI SIS-18: Methods and Applications" PhD Thesis, TU Darmstadt 2014.

5/23/2018

20 % beta beating

50 % beta beating

200

 $\Delta Q_v = 0$ $\Delta Q_v = 0.07$ $\Delta Q_{\rm v} = 0.10$

 $\Delta Q_{v} = 0.13$ $\Delta Q_{v}=0.14$

17.5

150

12.5

S.H. Mirza

15.0

Measurement of transfer functions of hardware (System identification)

Project layout

