minimizing the dislinearity \& coupling issues in the 4 button's BPM block

## and dealing with other inevitable dyssymmetries

Kees Scheidt
Diag. group ESRF

minimizing the dislinearity \& coupling issues in the 4 button's BPM block and dealing with other inevitable dyssymmetries

## Outline :

1) the cause of dislinearity \& coupling $\rightarrow$ the simplistic $\delta / \Sigma$ formula (DoS)
2) examples of ESRF BPMs, now and for LE-Ring
3) why is it an issue now?
4) different solutions: Polynomials and/or Voltage Inversion
5) examples: Bpmlab from Andriy Nosych (ALBA)
6) electric offset of the BPM-block, due to non identical Buttons
7) also : correct calculation of Sum and Q

## dislinearity \& coupling :

the electronics measure the strength of the RF signals of the 4 buttons, with very good linearity and low noise \& stability \& reproducibility etc. etc. $\rightarrow$ perfect ! but ..... with very simplistic formulae to convert these 4 signals into $\mathbf{X} \& \mathbf{Z}$ values :

$$
\begin{aligned}
& X=K x \cdot(A+D-B-C) /(A+B+C+D) \\
& Z=K z \cdot(A+B-C-D) /(A+B+C+D) \\
& Q=K q \cdot(A+C-B-D) /(A+B+C+D)
\end{aligned}
$$

$$
355 \mathrm{KHz} \quad 10 \mathrm{KHz} \quad 5.5 \mathrm{KHz} \quad 40 \mathrm{~Hz}
$$

this $\delta / \Sigma$ formula applies to all data-streams \& buffers: TbT, FA, dec-TbT, SA

boundary element method \& analysis

with courtesy to G.Rehm, DLS, UK

with courtesy to G.Rehm, DLS, UK
todays BPM using DoS
mapping $\longrightarrow$
colormap of the linearity error [mm]

how to illustrate
the problem ?
todays BPM using DoS

Linearity error [mm] for todays BPM and the 2 EBS-BPMs

colormap scales all the same : 1 mm
calculations done in $4 \times 4 \mathrm{~mm}$ region, on the 3 BPM geometries, see next slides



## large EBS BPM

## DoS

each image represents $4 \times 4 \mathrm{~mm}$ region


large EBS-BPM , Z to X coupling [\%]


## small EBS BPM

## DoS

each image represents
$4 \times 4 \mathrm{~mm}$ region


small EBS-BPM, $Z$ to $X$ coupling [\%]
$Z \rightarrow X$
50\%!

note : for small EBS-BPM : with beam at $X=Z=1 \mathrm{~mm}$ : coupling of $X \rightarrow Z=10 \%$
at $X=Z=2 \mathrm{~mm}$ : coupling of $X \rightarrow Z=37 \%$


define Zones with what expectation of dis-linearity error and couplings

## why is it an issue now?

1) it has been an issue since long, treated case-by-case by different people \& labs
2) the (todays' trend towards) smaller geometries of the BPMs (smaller beam-pipes) amplify the dislinearity \& coupling
3) once the beam is close to the center the problem is alleviated, perhaps even negligible but in new, "difficult" rings :
-a- the beam will often be far away from center (initial commissioning) and the DoS results may be too misleading to allow efficient orbit correction -b- even later (after orbit correction) the beam may (in many BPMs) not be close enough to the center, and DoS coupling will corrupt lattice measurements
like beta functions, phase-advance, response-matrix (steerer $\rightarrow$ BPMs)

- T.Shintake, Sensitivity calculation of BPMs using boundary element method, 1987
- A.Stella, INFN, Frascati, Analysis of the Daphne BPM with boundary element method, Dec. 1997
- R.W.Helms, G.H.Hoffstaetter, Cornwell University, Orbit \& optics improvement by evaluating the nonlinear BPM response, 2005
- G.Kube, DESY, Hamburg, Sensitivity estimation for PETRA-III BPMs based on a boundary element method, 2007
- G.Rehm, DLS, UK, Boundary Element Solver, Matlab script configurable for different BPM geometries
- N.Hubert, L.Nadolski, Soleil, France, BPM data correction at Soleil, 2008
- R.Bartolini, J.Rowland, DLS, UK, Geometric nonlinearities of a 4 buttons BPM, Feb. 2010
- A.Nosych, ALBA, Barcelona, Overview of the geometrical non-linear effects of buttons BPMs and methodology for their efficient suppression, 2014


## dislinearity \& coupling are 2 different issues

but both originate from the same problem $\rightarrow$ geometry of BPM-block \& the un-suitable DoS and both can be solved by same 2 (different) solutions :

- A : 2D cross-terms polynomials possibly applicable inside BPM electronics, if not then in the server (or higher level)
or
- B : "Voltage Inversion"
reiterative converging process, more precise for some cases, more time consuming not further treated in this presentation
example of a 2D cross-term polynomial of the $5^{\text {th }}$ order :

```
X=a+d-c-b/(a+b+c+d) Y=a+b-c-d/(a+b+c+d)
Xp = + 6.752\cdotX -8.701 X.Y ' -2.503\cdotX\cdotY4 +0.597 X 
```


in comparison, the DoS :
$X=a+d-c-b /(a+b+c+d) \quad Y=a+b-c-d /(a+b+c+d)$
$X d=+6.752 \cdot X$
$Y d=+15.761 \cdot Y$
mm


## solution :

using 2D cross-terms polynomials

## However:

1) computing time : this correction has to be applied on each sample of BPM data ...

40 Hz SA-data should be feasible
2) what happens with unknown electric offsets?
a) We measure \& compensate these as good as possible b) The effect of un-correct units will be simulated
3) even these polynomials do not to fully correct the dislinearity Voltage Inversion can be used for very large displacements, but at low data-rates, yet OK for first-turn(s) commissioning

big aperture BPM
\# 1, 2, 3, 8, 9, 10

## examples from Bpmlab

Bpmlab is written \& maintained by Andriy Nosych, at ALBA, Barcelona in principle available free of charge, contact Andriy on : anosych@cells.es
the ESRF is collaborating with him and ALBA to get in 2018 a more evolved $\&$ upgraded $\&$ specific version of it to more systematically deal with our needs \& concerns on BPM-blocks
so in addition to the visualization of the BPM, the errors, the mapping, the calculation of polynomials etc.
this specific ESRF version will also calculate : - the Sum and $Q$ (incoherence) values

- the $\mathrm{H} \rightarrow \mathrm{V}$ and $\mathrm{V} \rightarrow \mathrm{H}$ coupling values
and determine the best polynomials that correct : - both the beam's H \& V coordinates - and Sum and Q
provide a parallel solution using Voltage Inversion for extreme cases
and also allow an assessment of "wry" BPMs and their most appropriate correction

| BpmLab | Beam pipe cross-section: |  | Electrode type: |  | How many: |  | Or load a BPM preset: |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Polygonal | - | Polygon | - | 4 | - |  | - |  |

## 

| ■ Vacuum chamber |  |
| :---: | :---: |
| Host machine | ESRF |
| BPM name | BPM6 ( 6 mm buttons) |
| Corner coords | [25 3;10.12989 3;9.19... |
| $\square$ pectrades |  |
| Electrode 1 | [3.531077 6.077077;5... |
| Electrode 2 | [-3.531077 6.077077;-..] |
| Electrode 3 | [-3.531077-6.077077;... |
| Electrode 4 | [3.531077-6.077077;... |
| $\mathrm{GM}_{\text {Mesh settinas }}$ |  |
| Mesher timeout | 300 |
| Refinement | Electrodes |
| Min edge length | 0.06 |
| Max edge length | 0.6 |
| GMau Settinns |  |
| Interpolation | natural |
| Color axis (DOS) | [0, 0.5] |
| Color axis (POLY) | [0, 0.5] |
| Color axis (INV) | auto |
| Map smoothing | V |

## Color axis (DOS)

Color limits for displaying error of DOS-scaled maps: auto or [min_limit max_limit] in mm.


## DOS treatments:

| Orthogonal/4 |
| :---: |
| Orthogonal/2 |
| Diagonal |

## Manual calibration

kx,ky override:


Optimized mesh: Nodes: 6508, Tris: 11198, Elapsed: 0.0 sec



status : contract in process ESRF-ALBA delivery : end 2018

What is the electric offset of a BPM-block ?

3 kinds of offsets : - electric offset BPM-block $\rightarrow$ non-equal sensitivity of the 4 buttons

- alignment/mechanical offset of the BPM-block
- offset due to electronics / RF-cabling
other offset causes not considered here (tilts, distorted geometry block/buttons)



## CH14-SR0413

picture taken 23/02/2018, ESRF

## C-button strongly retracted

perfect

Measurements of "cross-RF-transmission" in BPM-blocks

$4 \times 3$ measurements $\rightarrow$ sensitivity of each of the 4 buttons
results of RF-cross-transmission measurements on numerous EBS-BPMs, here below only of BPM \#1 and BPM \#10

detection of incoherent electric offsets (possible with beam) : the incoherency ( $\operatorname{or} Q$ ) values of a set of A-B-C-D values

this $Q$ is a very useful value :

1) to indicate the error-margin of the BPM results
2) but also to detect any the drift or jumps of that Q -value
however with the simple DoS formula that only works in a small central area of the BPM
so, the same tool (Bpmlab from ALBA) that calculates linear \& un-coupled BPM results will also calculate the correct $Q$ value (over a large region)

this will also be dealt with by Bpmlab_v_ESRF


> this will also be dealt with by Bpmlab_v_ESRF
consequence for BPM-Spark software :
in addition to :
the existing H and V offsets
4 button-sensitivity constants to be added

```
DoS :
X=a+d-c-b/(a+b+c+d) Y=a+b-c-d/(a+b+c+d)
X = Kx P X + Xoff
Y = Ky \ Y + Yoff
```

```
X=a\cdotKa +d\cdotKd-c}\cdot\textrm{Kc}-\textrm{b}\cdot\textrm{Kb}/(a\cdotKa+b\cdotKb+c\cdotKc+d\cdotKd
Y=a\cdotKa+b\cdotKb-c\cdotKc-d\cdotKd / (a\cdotKa+b Kbb+c\cdotKc+d\cdotKd)
```



minimizing the dislinearity \& coupling issues in the 4 button's BPM block
and dealing with other inevitable dyssymmetries

## Thauk you for your asterition



Kees Seheide
Lidera worbshop 8018

