

Kees Scheidt Diagnostics Group Accelerator & Source Division

the new ESRF low-emittance Storage Ring,

its concept of both the BPM and the (Fast) Orbit Correction systems, with their consequences of implementation

OUTLINE

The Low-Emittance Ring :	motivation architecture & characteristics & constraints & time-schedule challenges & difficulties
Diagnostics upgrade (?) :	more BeamLoss Detectors \rightarrow all (128) should be both fast & sensitive more BPMs (from 7 to 10 per cell) : but <u>NOT better</u> emittance monitors (X-ray pinhole) : <u>LESS then today</u> , and <u>NOT better</u> FOC and current monitors : " <i>copy-paste</i> " today's versions
BPMs in details :	Buttons : C-f-T in process Blocks : 2 geometries RF connections & accessibility aspects Electronics : - recuperate the existing Liberas-Brillance (today >6years) - add a sufficiently good system for the extra BPMs
Sufficiently good system :	Spark ERXR : - some preliminary tests - specs & time-schedule - further ideas

Motivation :

reduce the horizontal emittance from 4nm to 0.15nm

beam-line experiments can benefit from an increase in brilliance

Also, the coherence (the coherent fraction, in hor.plane) will increase

LOW-EMITTANCE RING AT THE ESRF

when : 2019 \rightarrow the full year to <u>dismantle the old ring</u> and to <u>install the new</u> major constraint : keep all X-ray beamlines at the same location keep all Users happy until last day (19th dec 2018) and:

The European Synchrotron

DECOMMISSIONING OF THE EXISTING STORAGE RING

Proposed material release plan

Compliance with the clearance levels defined in the Council Directive 2013/59/EURATOM

Surface dose measurements (indistinguishable from background)

 $\sum_{all \ isotopes} \frac{AS_i}{SE_i} \leq 1$

guaranteed for 1 cm³ hotspots.

ESRF LOW-EMITTANCE RING : THE CHALLENGES : GIRDERS & TRANSPORT

CHALLENGES : A TOTAL OF 14 COMPLEX VACUUM CHAMBERS PER CELL

LOW-EMITTANCE RING : CHALLENGES : THE MAGNETS AND TOLERANCES

BPMS & FOC : COPY & PASTE + SOME NEW ELECTRONICS

Reminder of today's systems :

today's FOC :

7 BPMs (Liberas) per cell 3 Fast Steerers per cell all in a dedicated 10KHz (Fast) network for the FOC with dedicated broadcasting protocols, FOC processors Tango-servers, timing network, additional nodes, etc.

WP-7 DIAGNOSTICS & FEEDBACKS : 6 LIBERAS & 4 SPARKS IN THE CELL

<u>4 new electronics per cell</u> = 128 units in the Ring :

a candidate : Spark ERXR is an upgrade from the 75 Sparks used in the new Booster BPM

compared to Liberas these Sparks have NOT implemented :

- Fast-10KHz output,
- Interlock,
- Post-Mortem,

- Hi-stability / self-calibration mechanism (RF-mux + DSC)

yet, their natural stability / reproducibility (24hrs drift etc.) is expected within +/- 2 um [see measurements]

both have full functionality for Turn-by-Turn measurements (injection & lattice studies) both have same sensitivity and noise characteristics [to be confirmed]

still to be added : nm output, 32bit DDC processing, offset-tune (Aug.2015)

Libera vs Spark : how to compare what ?

1) T-b-T data (1MHz BW) sensitivity (for ultra-low currents)

not available (Spark)

- 3) Dec64 data (5KHz)
- 4) Short term stability (sec. min.)
- 5) Longer term stability (e.g. 10hours)

Libera vs Spark :

Phase/Space* plots from Turn-by-Turn data (at 0.1mA, single-bunch)

3m RF cable, Time-Domain-Processing

* poor man's

SPARK VS LIBERA : NOISE, DRIFT, REPRODUCIBILITY

SPARK VS LIBERA : NOISE, DRIFT, REPRODUCIBILITY

SPARK : NO OFFSET TUNE YET, BUT POOR MAN'S OFFSET-TUNING

SPARK & LIBERA : ADC IN 4 BUNCH MODE

The European Synchrotron

SPARK & LIBERA : DRIFT OVER 10 HRS (4 BUNCH FILLING MAY 2015)

SPARK : DRIFT IN 13 MINS (4 BUNCH FILLING MAY 2015)

SPARK: NOISE IN 30 MILLISEC (4 BUNCH FILLING MAY 2015)

rms X = 334 nm

rms Z = 315 nm

Libera :

rms X = 723 nm

rms Z = 1000 nm

prototype tests fully satisfactory

C-f-T document is written

soon to be launched

delivery (1500 units) expected by end 2015

1500

total costs < 400 KEuros

BPM BLOCKS

BPM GEOMETRY, **MAPPING**, **BUTTON DIAMETER**

mapping is done, optimization of button diameters (for RF signal strength)

with courtesy to G.Rehm, DLS

BPM BLOCKS, SUPPORT & FIXATION

Libera Workshop Solkan - 28 May 2015 - Kees Scheidt

BPM BLOCKS, **SUPPORT & FIXATION**

laser tracker alignment

on ESRF

to be attached to the chamber ?

this cable installation will be done BEFORE installation of the vacuum chamber into the magnets and can, in principle, NOT be manipulated after that

The European Synchrotron

Page 32 Libera Workshop Solkan - 28 May 2015 – Kees Scheidt

BEAM LOSS MONITORS

SPARK : FURTHER IDEAS

Your Idea

Noticed anything missing in our instruments?

Want more capabilities?

our experience with Spark in our Booster :

- PoE works well : allowed installation inside the tunnel, thus avoiding much & costly RF cabling and enhancing sensitivity & resolution (at low currents)
- PLL not needed for T-b-T : the slow trigger re-synchronises all BPMs up to at least thousands of Turns

- Spark ERXR : installation <u>inside</u> the Storage Ring Tunnel or outside (accessible cabinets) ?
 - **My Idea :** the PLL could be driven from RF signals this would avoid this separate Master-Clock (and cabling)

thank you for your attention !

