

Extensions and common points of the platform C instruments

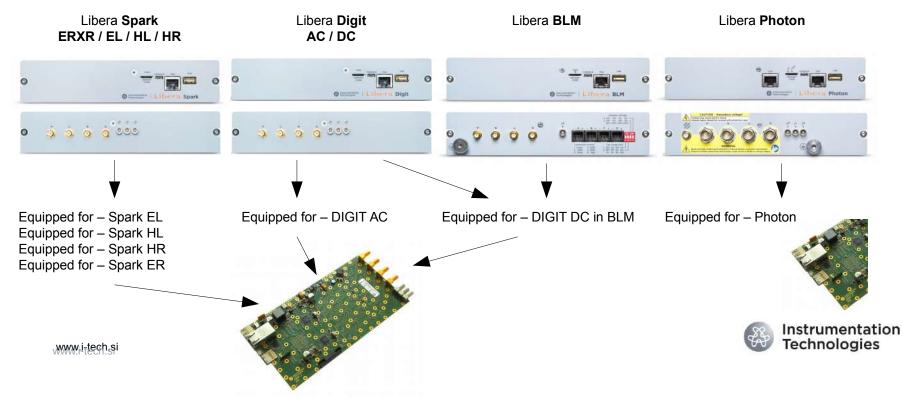
Peter Leban, June 1, 2017

www.i-tech.si

Content

Platform C hardware

Common hardware

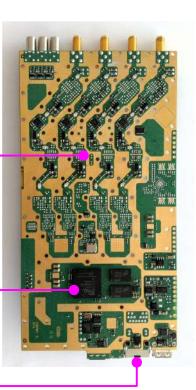

Extension modules

Common software

Conclusion

Platform C hardware

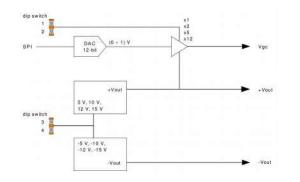
Common hardware points

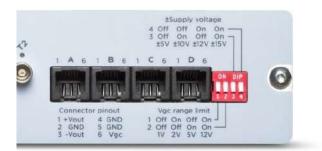

3x Input / output LEMO

4 channels with various assembly options

Zynq 7020

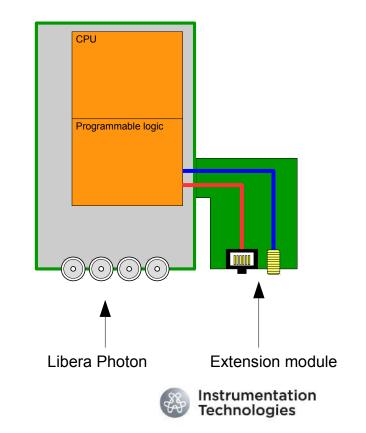
www.i-tech.si


2x dual channel ADC


Extension slot

Extension module for BLM

- 4x RJ25 interface
- DIP switch
- Power supply and gain control for the PMTs
- Direct control from Zynq (FPGA and OS)



Extension module for Photon (not developed yet)

- To offer analog output for feedback purposes
- Planned from design phase, instrument can be upgraded, space was allocated already
- Type of connector (SMA, BNC, LEMO?) and DAC still to be specified
- Space available for 2 connectors (e.g. SMA and RJ-25); serial data output possible as well
- Data pins directly controlled by the Programmable Logic (FPGA) from Zynq

(Hardware) updates for platform C

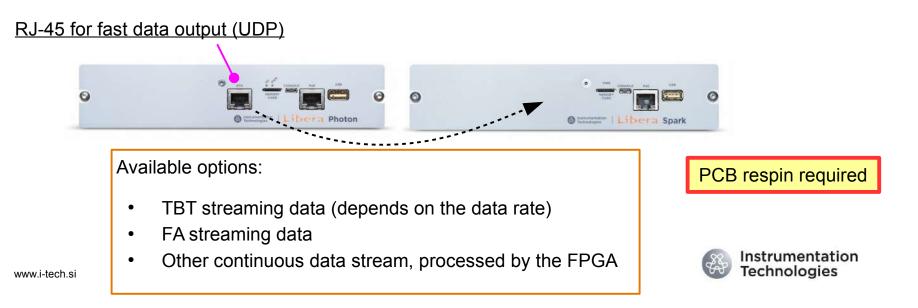
Users asked for

- Fast data output (additional dedicated interface)
- Different ADC sensitivity
- Interlock capability
- Several modifications in <u>ebpm</u>, <u>blm</u> and <u>photon</u> applications

for energy ramping application

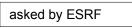
"oscilloscope" features

for beam profile monitors


for Spark ERXR

era

Fast data output asked by ESRF, APS


It is available in Libera Photon. The PCB is slightly different from the BLM, Spark and Digit

pera

i

ADC sensitivity

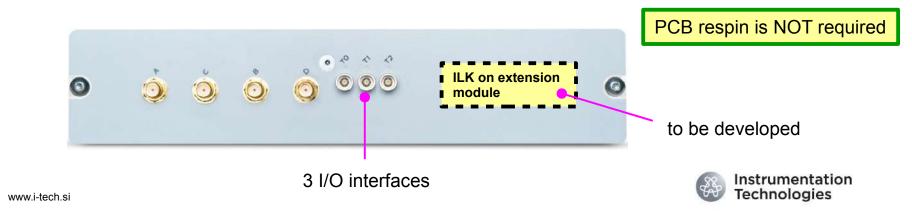
It is configured during assembly. For the future, it could be done runtime by user.

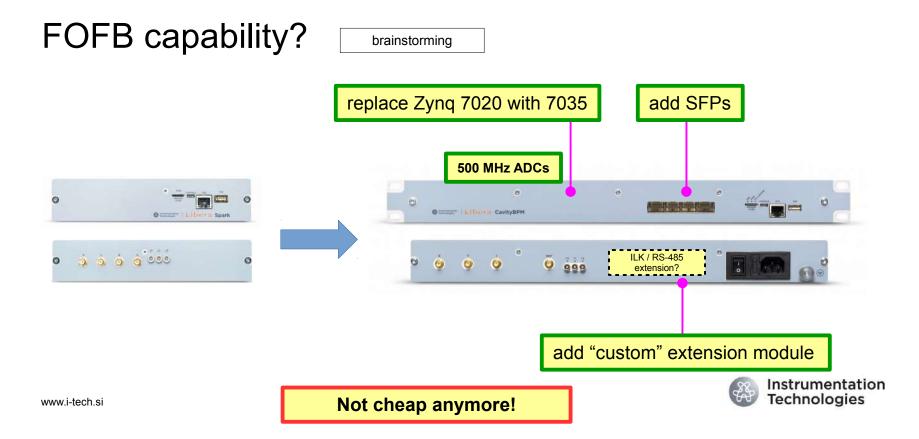
Available options:

- 0.5 V full scale
- 1.0 V full scale

PCB respin required

Interlock capability asked by Cornell


Typical use (all configured as inputs)


- T0 ... reference clock (»tbt«)
- T1 ... postmortem trigger
- T2 ... (acquisition) trigger

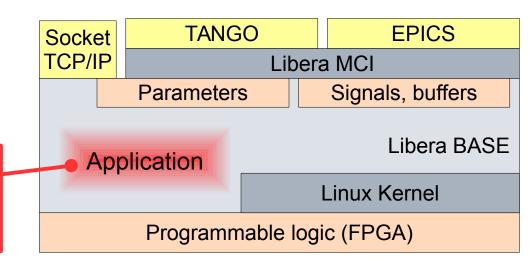
Interlock output on the extension module

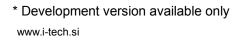
- Interlock functionality implementation (FPGA, software)
- Use same circuit as on the Libera Electron / Brilliance / +

pera

Libera

Software


- Support for most devices in the general framework: Libera BASE Continuously developed, currently builds for lucid (32/64), trusty (32/64), CentOS and Zynq Interfaces to latest ADCs (500 MHz) and FPGA (Zynq 7035)
- Client application is backward compatible (MCI)
- New application does not interfere (unless required) with the Libera BASE
- EPICS, TANGO and Socket interfaces are cross-platform compatible



Common software points

- FPGA cores
- Libera BASE
- EPICS interface
- TANGO interface
- *Socket TCP/IP interface

Application (digit, beam loss, bpm) is <u>custom</u> but uses common blocks.

(I-Tech's) TANGO interface

...is called libera-ds

- Initial version installed in Libera Brilliance+ (THOM-X)
- Improved version then installed on Libera BLM (ESRF) and Libera Spark EL (ALBA)
- Further debugging by THOM-X and ESRF; latest updates provided by ESRF
- Same code compiled for Ubuntu lucid/trusty and Zynq Linux
- ... to be continued

era

(I-Tech's) EPICS interface

- ...is called libera-ioc
 - Several updates since year 2010 (from CA server to IOC)
 - Using I-Tech's patched EPICS BASE 3.14.12.2 for optimal CPU consumption
 - ... complaints / requirements from NSRL, NSRRC and APS
 - Migration to the official EPICS BASE 3.15.5; currently under testing at NSRRC and APS
 - Requires smarter handling of buffer readout (disable when not in use)
 - All use cases not known; yet to be improved

Socket TCP/IP interface

...is called libera-scpi

- Bypasses the MCI layer; direct calls to the Libera BASE
- SCPI-like commands
- Tested in MATLAB environment
- ...to be further expanded

www.i-tech.si

```
format longG
t=tcpip('10.0.6.114',5677,'NetworkRole','client')
t.InputBufferSize=100000
fopen(t)
fprintf(t,'dump')
data=fread(t, 27)
while t.BytesAvailable > 0
    data=fscanf(t,'%c',t.BytesAvailable)
    %strread(data)
    str2num(data)
end
fclose(t)
```

Libera

Conclusion

- Many instruments based on the same PCB
- Extension slot available for various modules
- Common software framework allows fast development cycles
- Platform upgrade possible with use of faster A/D converters

