EuroGammaS

European Consortium for the delivery of a Gamma Beam System to ELI-NP

European Consortium for the delivery of a Gamma Beam System to ELI-NP

LIBERA Workshop 2016 ELI-NP Gamma Beam Source Diagnostics

Giovanni Franzini

Contributions: S. Bini, F. Cioeta, A. Mostacci, D. Pellegrini, A. Stella, S. Tocci

Topics

- Diagnostics overview
- Charge measurements
 - Integrating Current Transformer
 - Digitizer
 - Other methods for Charge measurements

Beam Position measurements

- Stripline Beam Position Monitor
- Readout electronics
- Cavity Beam Position Monitor

Beam Screens

Imaging system

Linac diagnostics

ELI-NP Gamma Beam Source Diagnostics

Beam Charge

auninin

ELI-NP Gamma Beam Source Diagnostics

Charge measurements

Integrating Current Transformer (ICT)

Model: BERGOZ ICT-CF4"1/2-34.9-UHV-316LN-005-5.0-LD-BK150

ELI-NP Gamma Beam Source Diagnostics

BERGOZ ICT Transformer ICT-CF4"1/2-34.9-UHV-316LN-005-5.0-LD-BK150 Passive Model				
Operating Temperature	< 150°C			
Operating Temperature with calibration coil	< 100°C			
Turns Ratio	5:1			
Sensitivity	5	V s / C	MEASURED	5.04 V s / C
Peak Voltage / Qbeam	~ 2	V / nC	MEASURED	1,5 V/nC
Upper cutoff frequency (typ)	150	MHz	MEASURED	180 MHz
Lower cutoff frequency	< 13	KHz	MEASURED	4.5 kHz
Signal Drop	3.59	% / us	MEASURED	3,57 %/µs
Pulse length (typ)	5	ns	MEASURED	5,6 ns (full length)

Agilent Digitizer

Digitizer Specification Agilent M9210A		
Resolution	10 bit	
Sampling rate (single ch./dual ch.)	4 Gs/s 2 Gs/s	~20 samples x pulse ~10 samples x pulse
Analog Bandwidth	1.4 GHz	
Memory	Up to 256 MS / channel	
Input Range	Programmable up to 5Vpp	

Same in the

Next Steps:

Multi-bunch measurements.

Impact analysis and measurements of the electrical noise and non linearity introduced by the digitizer.

Estimation/measurements of the precision and the resolution of the whole system.

ELI-NP Gamma Beam Source Diagnostics

Test bench for ICTs

ELI-NP Gamma Beam Source Diagnostics

Test bench front panel

We programmed a LabVIEW VI in order to perform multiple test on ICT output (Time Domain and frequency domain measurements, signal integral,...)

ELI-NP Gamma Beam Source Diagnostics

beam / Qout Measurements

Input signal: 3,84 V Impulse on 50,3 Ω, duration ~ 10ns

Δ_{in_ict} [nVs] $Q_{in} = Δ_{in_ict} / 50,3$ [nC] 34,83 0,6924

Frequenza di Camp. [MS/s]	Δ _{out ict} [nVs]
5000	3,4375
2500	3,5271
1250	3,3891
625	3,4435
312,5	3,3783
156,3	3,4583
78,3	2,4584
52,1	7,2000
39,1	4,0167
31,25	11,0417
26,04	11,2750
22,32	5,4833
19,53	15,0667
17,4	10,4250
15,67	5,9583
14,2	24,7042
13,02	18,8000
12,02	9,1000
11,2	29,4000
10,42	33,7500
9,8	20,0667

Simulations with two pulses (T2 – T1 = 16 ns) for different cable lengths, connected to the ICT output

Long cable introduces attenuations and stretch the signals. Measurements are on-going...

Other types of Charge measurements

Measurements of the Beam Charge by using the Stripline BPM. Measurements of the Beam Charge on the dump @M4.

Beam Position Monitor

ELI-NP Gamma Beam Source Diagnostics

Stripline Beam Position Monitors

ELI-NP Gamma Beam Source Diagnostics

ALBA calibration bench

ELI-NP Gamma Beam Source Diagnostics

ALBA contribution

Mechanical offset measurements

BPM-03 Motor readback 8 Measured wire position 6 2 0 -6 -8 -2 2 6 8 0 -8

Main offset contributions:

- Geometrical Imperfections
- Different cable length
- Electrical offset (load mismatches)
- Electronic noise

Mechanical offset

Mechanical offset

ELI-NP Gamma Beam Source Diagnostics

ALBA contribution

Acquisition System

Libera Libera Single Pass E

Limiting factor for resolution is detector noise

ELI-NP Gamma Beam Source Diagnostics

Cavity BPM

minin

ELI-NP Gamma Beam Source Diagnostics

Cavity Beam Position Monitor

Cavity Beam Position Monitor #2

Beam Screens

annin in

ELI-NP Gamma Beam Source Diagnostics

Beam Screen

Yag: single bunch measurement Si OTR: full train measurement Si OTR (with Gated camera): measurements on every single bunch of a train

Damage studies for multi munch Operation (on going)

ELI-NP Gamma Beam Source Diagnostics

Screen Specifications OTR

Bulk Si, 40mm x 40mm x 0.380mm One side Al coated 50nm

Screen Specifications YAG

YAG:Ce screen, both size polished One side Al coated 60nm Dimension: dia. 25.4 x 0.1 mm

Optical line

ELI-NP Gamma Beam Source Diagnostics

Imaging system

Camera lens

Magnification Target distance

better than 1:3 0.6-1 m

Teleconverter

anninin

Coma Firm

CCD Camera

Model Pixel size Resolution Pixel bit depth

Basler Scout scA640-70gm 7.4um x 7.4um 659 px x 494 px 12 bits

ELI-NP Gamma Beam Source Diagnostics

Camera lens test-bench @ SPARC_LAB

Resolution [µm]	IVI	Field of view [cm]
25	1	$0.47\ge 0.35$
25	1.26	$0.61 \ge 0.46$
44	2.01	$0.98 \ge 0.74$
50	2.48	$1.21 \ge 0.91$
56	2.91	$1.42 \ge 1.06$
63	3.25	$1.58 \ge 1.19$
79	3.88	$1.89 \ge 1.42$
79	4.12	$1.96 \ge 1.47$
111	5.54	$2.7 \ge 2.03$
125	6.37	$3.11 \ge 2.33$
	25 25 44 50 56 63 79 79 79 111 125	Resolution [jiii] M 25 1 25 1.26 44 2.01 50 2.48 56 2.91 63 3.25 79 3.88 79 4.12 111 5.54 125 6.37

USAF 1951 12	EDMUND	
² ≡ ⁻²	-1 III≣¹ III≣²	x =
3 ∃Ⅲ ,		Th
4 三 Ⅲ ﷺ : 5 三 Ⅲ	≣ -2	Th
6 Ξ Ⅲ		lin
		an

 $c = 2^{Group + (Element - 1)/6}$

The resolution is 1/x;

The sizes of each horizontal line are 2,5/x for the length and 1/(2x) for the width and viceversa for the vertical lines.

Distance [cm]	$\mathbf{Resolution}\;[\mu\mathrm{m}]$	Μ	Field of View $[cm]$
65	31	1	$0.49 \ge 0.37$
80	35	1.56	$0.76 \ge 0.57$
90	39	1.88	$0.92 \ge 0.69$
100	50	2.17	$1.06 \ge 0.79$
110	56	2.41	$1.18 \ge 0.88$
120	63	2.82	$1.38 \ge 1.03$
130	70	3.13	$1.53 \ge 1.14$
195	111	5.04	$2.57 \ge 1.93$

180mm lens with teleconverter (2x)

180mm lens

ELI-NP Gamma Beam Source Diagnostics

Thank you for your attention

ELI-NP Gamma Beam Source Diagnostics