lechoologies
www.i-tech.si

Peter Leban

Libera

 Electron/Brilliance, release $\mathbf{2 . 0 0}$peter.leban@i-tech.si

Libera warkshap

Features for Release 2.00

- Operating system platform upgrade
- Improved stability and robustness of Libera software
- Implementation of new features

Instrumentation lechnologies

What's New - OS Platform Upgrade (1)

- New armel Linux platform
- More efficient protocol between the kernel and programs
- Upgrade to Linux kernel 2.6.25
- Newer versions investigated
- Improved multithreading
- Using Native Posix Threads Library (NPTL)
- FPGA/SBC bus timing fine tuned
- Improved DHCP functionality
- Setting hostnames to Liberas according to their MAC addresses (not only IPs)

What's New - OS Platform Upgrade(2)

- A lot of effort was put into easier upgrade from previous platform
- Performance improvements:
-9x-10x faster floating point operations
- FPGA/SBC throughput is higher up to 30 \%
- Faster creation of threads, depending on number of threads
- Threads use less memory

What's new - functions

- Position calculation from ADC rate buffer at single-bunch filling
- Position calculation from ADC rate buffer at 100 \% filling
- Antispike
- Calculation of average SUM between two triggers
- 2nd maximum ADC value (from all 4 channels) is available to read
- Post-mortem triggering

Instrumentation

Position Calculation from ADC Rate Buffer at Single-bunch Filling (1)

Position Calculation from ADC Rate Buffer at Single-bunch Filling (2)

libera -3 1000 --sb
to run single-bunch position measurement directly on Libera
Output:
[threshold position threshold pretrigger posttrigger X Y SUM]
threshold ... not to take into account all noise below useful part of signal
pre/post trigger ... to define useful part of signal
X, Y ... position of bunch
SUM ... related to current

Position Calculation from ADC Rate Buffer at Single-bunch Filling - Test Case 1

- 1000 ADC rate buffers acquired (150
samples each)
- position calculated for each bunch
- number of counts: around $\mathbf{2 5 0 n n}$

ADC rate buffer - single bunch position, 1000 acquisitions

- Xrms = 3,5045 um
- Yrms $=$ 3,5672 um

Position Calculation from ADC Rate Buffer at Single-bunch Filling - Parameter
 Optimization

lechnologies

Position Calculation from ADC Rate Buffer at Single-bunch Filling - Posttrigger Effect, Test Case

Posttrigger	Xrms $[\mu \mathrm{m}]$	Yrms $[\mu \mathrm{m}]$
30	16,87	9,25
80	7,05	6,76

Position Calculation from ADC Rate Buffer

at cw (1)
libera -3 1000 --cw
to run position measurement at cw directly on Libera
Output:
[A; B; C; D; X; Y; Q; A'; B'; C'; D']
Where:
A, B, C, D ... original values from bpms
X, Y, Q ... calculated position
$A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime} . .$. recalculated values from bpms
Recalculation is needed because samples are not exactly 1 sample (90 deg) apart.

Position Calculation from ADC Rate Buffer at cw = Calculation

sampling points
la ... original signal
$\mathbf{Q a}(\mathbf{n})=\mathbf{s q r t}\left[\left(a^{*} \operatorname{la}(n)\right)^{\mathbf{2}}+\left(b^{*} \operatorname{la}(\mathbf{n}-\right.\right.$ 1) ${ }^{2}$]
$\mathbf{V a}(\mathrm{n})=\mathbf{\operatorname { s q r }}\left[(\operatorname{la}(\mathrm{n}))^{\mathbf{2}}+(\operatorname{la}(\mathrm{n}-1))^{\mathbf{2}}\right]$
$\mathbf{a}=-\mathbf{1} / \mathbf{t g} \theta$
$\mathbf{b}=\mathbf{1} / \sin \theta$
$\theta=2$ I * NCO/VCXO

Example: diamond_220_sr
a=0,0286
$b=1,0004$

__ original signal, moved for 1 sample ($\sim 90 \mathrm{deg}$)

Position Calculation from ADC Rate Buffer

Libera Workshop 2008

Position Calculation from ADC Rate Buffer at 33 \% Bunch Filling

Libera Workshop 2008

Position Calculation from ADC Rate Buffer at 33 \% Bunch Filling - X, Y Position \& SUM

Libera Workshop 2008

Conclusion - Position Measurement from ADC

- Position measurement works fine with single bunch fill. When measured on test setup, position RMS under $4 \mu \mathrm{~m}$ was achieved.
- It is possible to use single bunch position measurement method to calculate position of cw (100% or any filling).

Antispike (2)

Spikes appear, when switches change position. Their position is well defined.
Antispike function is implemented in FPGA and CSPI.

- by default, antispike function is always on (FPGA and CSPI)
- CSPI:
- User can acquire raw data without antispike function (libera -0 -r)
- User can acquire data (amplitudes) with antispike function (libera -0)
- FPGA:
- Antispike function is used for FA and SA data output
- it is possible to turn antispike function off (/etc/default/libera)

Antispike (3)

Antispike - example: phase-matched cables

Antispike - example: phase non-matched cables

Conclusion - antispike

- it is very effective when phase non-matched cables are used
- the effect is more visible with Libera Brilliance
- amplitudes $\mathrm{Va}, \mathrm{Vb}, \mathrm{Vc}$ and Vd are corrected
- X, Y position is more accurate, RMS is lowered
- up 30x lower RMS on TbT data (phase non-matched cables)
- up to $5 x$ lower RMS on FA data (phase non-matched cables)
- up to 25 x lower RMS on SA data (phase non-matched cables)

Average SUM between two triggers

- Goal is to measure current increase between two triggers
- Calculation is done on SUM data @FA data rate
- New switch for libera: libera -4 -n<number of acquisitions>
- Output from Libera: [timestamp_of_current_trigger average_sum]

```
timestamp=trigger2 (timestamp)
```


2nd max value of ADC data rate

- Goal is to continuously check (2nd) max value in ADC data rate
- Correlation with beam current can be done (accelerator specific)
- Value can be seen: libera -I
- Parameter: MAXADC
example:

ADC value [cnt]	Beam current [mA]
1000	5
5000	30
10000	120
25000	300

Post-mortem trigger

- Source of the trigger can be any of:
- external PM trigger
- position data (Xmin, Xmax, Ymin, Ymax)
- overflow_limit
- overflow_duration
- Limits/mode can be set through libera -s

Parameter: POSTMORTEM <Xmin Ymin Xmax Ymax overflow_limit overflow_dur mode>

Conclusion

- Majority of the features on the final version of the Libera Wish List, (www.itech.si/forum) have been implemented
- Release 2.00 will be available beginning of December 2008.
- Users are welcome to visit our forum to share experience and ask questions.

