Status of the BPM system at the ESRF

Friederike Ewald on behalf of Kees Scheidt, Francis Epaud, Benoît Joly

- What is new / status
 - Software
 - Hardware
 - *TbT commissioning*
 - Fast orbit control
- Sum signals for life-time measurement
- First experience with optimised Libera Brilliance Single-Pass :

 \rightarrow injection efficiency measurements

an intermediate view ...

Beam Orbit Plot (i.e. substraction from a reference orbit)

224 Liberas in the Storage Ring

soon: 5 BPM Libera Brilliances in **Booster** → for machine studies

Tests for charge-transfer measurement
→ Striplines + Libera Brilliance Single Pass
→ if successful: installation in
TI1 & SY & TL2

Software

- → firmware release 2.05.1 (Aug. 2009)
- \rightarrow committed to 2.2
- → Server : Tango ("Soleil" server restructured)

The ESRF Storage Ring BPM system

224 Libera Brilliance (32 cells x 7 BPMs)

- → Closed Orbit measurement and slow Orbit Correction
- → TbT capability has been tested and is close to be fully commissioned
- \rightarrow the FA (10KHz) distribution is in progress of commissioning

Status of failure rate (Sept 2009, 9 month after delivery)

→ speed control for too slow fans implemented

Temperature regulation

Temperature and fan speed control

- additional fans & doors
- 2.05.1 patch regulates 'under-speed' problem
- \rightarrow All fan speeds now between 4200 5400 rpm

Turn by turn synchronisation

Turn by turn synchronisation

Turn by turn synchronisation

MAF filter synchronisation

MAF filter delay

Time-Scanning of the MAF Filter

Status :

tested on a few cells, soon to be tested on all, and then use in real beam physics application

10 kHz fast orbit stabilisation

Data communication in the process of being commissioned

- \rightarrow Still some problems with:
 - "Software" and "Frame" errors in the Communication Controller
 - connection problems ?
- \rightarrow To do:
 - \rightarrow connect and test all cells
 - \rightarrow Amplitude and phase differences from electrodes to be compensated
 - \rightarrow power supplies for corrector magnets

RF amplitude and phase compensation

Life time measurement

4 x 10mA fill : The Sum signal of an <u>individual</u> Libera is (for low beam currents) much more stable than the DDCT (PCT) current monitors

→ SA-Sum signal of all Liberas → precise and fast Life-Time measurements from each Libera

 \rightarrow In next software version life time measurement included ?

Life time measurement (4 bunch filling)

Anomalous stations will rapidly show-up \rightarrow different way of checking BPM signals

DSC switching artefacts

The present DSC mechanism causes certain 'jumps' in the SA sum signal

An optimization of the DSC shall hopefully suppress these . . .

Charge transfer efficiency

Charge transfer efficiency

- \rightarrow Tests for charge transfer measurement
- → if successful: installation in TI1 & SY & TL2

Charge transfer efficiency: Example TL1 \rightarrow SY

- 5 bunches with $\Delta t = 176$ ns injected:
- Signals from ¹/₄ wavelength (352MHz) striplines in TL1 and SY
- Detection by Libera Brilliance Single Pass (without SAW filters)

Charge transfer efficiency: Example TL1 \rightarrow SY

- Using exclusively the ADC readings Allows to measure complicated bunch structures
- Signals from ADCs are big Beam current measurement from a single pass (!) of a 1µs bunch as precise as DCT measurement in the Booster (50000 turns in 50 ms !). Tested down to < 0.2 mA bunch charge.
- Very good reproducibility (< 1 %)
 Tested with the storage ring beam
- May become complementary injection efficiency monitors in the ESRF injector complex