

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Volker Schlott,

Stephan Hunziker, Vladimir Arsov, Felix Buechi, Maik Kaiser, Patrick Pollet, Steffen Schnabel, Andreas Schreiber

Reference Distribution System for SwissFEL

Contents

- **Motivation** Compact X-Ray Free Electron Laser SwissFEL
- SwissFEL Requirements for Timing Stability
- Reference Signal Distribution SwissFEL Layout
- Critical Issues and Components Libera Sync⁺
- Status & Outlook

Reference Distribution System for SwissFEL

PSI Future Project SwissFEL – A Compact Hard X-Ray FEL User Facility

PAUL SCHERRER INSTITUT

Reference Distribution System for SwissFEL

Volker Schlott, II-Tech Libera Workshop 2012, October 11th, 2012

SwissFEL Longitudinal Tolerances for the Reference Distribution System

SwissFEL longitudinal tolerance budget is driven by peak current stability of 10 – 30 %

 S-Band RF Photo Gun Ti:Sa laser generates photo electrons (τ = 10 ps (FWHM) @ 200 pC / 3.8 ps (FWHM) @ 10 pC) → laser pulse stability in reference to S-band RF gun...: 40 fs (rms)

 Injector S and X-band linear magnetic bunch compression in BC-1 (τ ≈ 200 – 300 fs (FWHM) @ 200 and 10 pC) → S-band and X-band RF phase stability...: 0.018° and 0.072° (~ 16.5 fs rms)

 C-Band LINAC electron beam acceleration & BC-2 (τ = 18.5 fs (FWHM) @ 200 pC / 1.85 fs (FWHM) @ 10 pC) → LINAC 1 / 2 / 3 C-band RF phase stability...: 0.036° (~ 16.5 fs rms)

Keep in mind:	the total tolerance budget for RF stations is		
	$\Delta \tau_{rms-jitter} = \sqrt{\tau_{sync}^2 + \tau_{LLRF}^2 + \tau_{HPRF}^2 + \tau_{Infra.}^2 + \dots}$		

Experimental Stations

(single-shot) laser pump – X-ray probe measurements

- \rightarrow relative arrival time jitter ~ X-ray pulse length...: < 10 fs (rms)
- → low pump-probe drift...: < 20 fsp-p per day

Schematic of Reference Signal Distribution to SwissFEL Sub-Systems

Volker Schlott, II-Tech Libera Workshop 2012, October 11th, 2012

Schematic of SwissFEL Reference Signal Generation and Distribution

- <u>RF locked pulsed laser</u> \rightarrow generate mutually locked RF frequencies (frequency comb)
- <u>Distribution of...:</u> \rightarrow pulse train to pulsed lasers and critical diagnostics (BAM)
 - → locked RF frequencies with cw fiber optic links (mainly to RF stations)

Clients of SwissFEL Reference Distribution System

• <u>gun & exp. lasers, BAMs</u>	\rightarrow \rightarrow \rightarrow	actively stabilized pulsed optical links (EDFL @ 1550 nm, 142.8 MHz, $\tau \approx 200$ fs) optical cross-correlation for highly stable and drift free stabilization performance goals: < 10 fs _{rms} jitter, < 10 fs _{p-p} drifts
 uncritical sub-distr. 	\rightarrow \rightarrow	actively stabilized cw optical link to central sub-distribution station sub-distribution to e.g. BPMs by coax cables
• <u>RF stations</u>	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	actively stabilized cw optical links (Libera Sync ⁺) distribution of sinusoidal microwave reference signals single frequency modulations for S-band, C-band and X-band RF performance goals: <10 fs _{rms} jitter (10 Hz – 10 MHz), <10 fs _{p-p} drifts / day
• <u>"Libera Sync</u> +"	\rightarrow \rightarrow \rightarrow	radio-over-fiber links based on telecom components (laser diodes etc) high reliability due to proven technology high performance

- \rightarrow moderate cost
- $\rightarrow~$ simple installation and testing

Starting Point of Collaboration – Original Libera Sync Link Distribution

Figure 1: Simplified block diagram of the electro-optical synchronization system.

PSI – I-Tech Collaboration on "Libera Sync+"

- <u>Goal</u>: optimize existing Libera Sync length stabilized fiber-optic link system for SwissFEL reference signal stability requirements
- Motivation (PSI)
- \rightarrow original Libera Sync provides already very good performance
- \rightarrow easy and reliable operation due to use of proven technology
- \rightarrow well developed firmware, user interfaces and remote control
- \rightarrow well established production process and experience in quality control
- <u>Motivation (I-Tech)</u> \rightarrow improvement of existing system for use in future FEL facilities
 - \rightarrow experienced partner (PSI) with excellent know-how in opto-electronics
 - \rightarrow shared (development) resources and minimization of risk (costs)
 - \rightarrow use of PSI lab equipment and tests in SwissFEL Test Injector Facility
 - → market launch with ambitious project (SwissFEL user facility)
- <u>Collaboration</u>...: → use of single fiber for up- and downlink separate fibers in original system caused "large" drifts due to different fiber characteristics
 - → optimization of components for lowest achievable noise and drift phase detectors, cables, photo-diodes, electronic circuits, mechanics...

Reference Distribution System for SwissFEL

CW vs. Pulsed Fiber-Optical Links – Main Challenges

cw fiber-optic link ...:

- \rightarrow lower cost and less complex alternative to pulsed optical-fiber links
- → ultra-high stability of RF phase detection required
- → low drift photo-detection required

PD and Phase Detector

PD Operation Point

("sweet spot")

1.5 2

50

-55

2 -100 8

-150

124.60

Call Had -55 A -100

-150

1006

1500

vanishing AM/PM conversion

2.5 3

1005

Microwave Photodiade, 04840.71, Virias=4V, 8=30Hz

2.5 4

PD input optical power (m/M)

3030

3500

4030

4.5

5.5

4500

Reference Distribution System for SwissFEL

Optimized PD and Phase Detector Performance (drift stable part of the link concept)

- Peltier stabilized phase detector (temperature stability < 0.01 °C) \rightarrow
 - use of temperature insensitive cables
 - laser intensity on PD at vanishing AM/PM conversion spot (sweet spot) to compensate for changes in laser power due to ΔT and / or polarization changes
 - amplitude stability kept to < 0.2 dB
 - set-up under normal (non temp.-stabilized) environmental conditions only covered with cardboard in electronics lab

Long Term Stability of Phase Detector < 10 fsp-p

2500 PD metage photocument (uA) Volker Schlott, II-Tech Libera Workshop 2012, October 11th, 2012

Feasibility of CW Radio-over-Fiber Link Concept – Components (Example 1)

CW Laser Diode & Mach Zehnder Modulator @ 3 GHz (low noise part of the link concept)

Feasibility of CW Radio-over-Fiber Link Concept – Components (Example 2)

Directly Modulated Laser Diode @ 3 GHz (low noise part of the link concept)

Additional Timing Drifts from "Out-of-Loop" Transmission Media

Material		Sensitivity	Timing drift
steel		15ppm/ºC	50fs/ºC/m
standard SM fiber	temperature rel. humidity	8ppm/ºC 25ppm/10%RH	40fs/ºC/m 125fs/10%RH/m
temp. optimized fiber (LCP coated)	temperature rel. humidity	<0.75ppm/°C 4.1ppm/10%RH	<3.7fs/ºC/m 20.2fs/10%RH/m
std. coax cable (bulk PTFE)		-85ppm/ºC	-425fs/ºC/m
temp. optimized coax cable (air-filled PTFE)	<13ppm/ºC	<4.212.5fs/ºC/m
air	temperature	-3ppm/ºC	-10fs/ºC/m
	pressure	2ppm/10mBar	7fs/10mBar/m
	rei. humidity	4ppm/10%KH	131S/10%RH/M

Tentative Schedule for PSI – I-Tech Collaboration

- First 3 GHz prototypes of optimized "Libera Sync⁺" expected for Spring 2013
- Extensive Testing in SwissFEL Test Injector Facility
- 6 GHz prototypes: End of 2013
- 9 GHz and 12 GHz prototypes: Spring 2014
- Delivery of approx. 40 units for SwissFEL: 2015