

Measurements with Libera Brilliance+

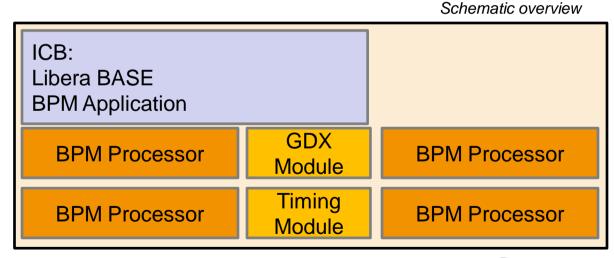
Peter Leban, Libera Workshop 2011, Solkan peter.leban@i-tech.si

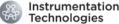
Contents of the Talk

- Libera Brilliance+: the elements
- Functionalities
- Tests at labs
- Time Domain Processing
- Future outlook

Why Libera Brilliance+?

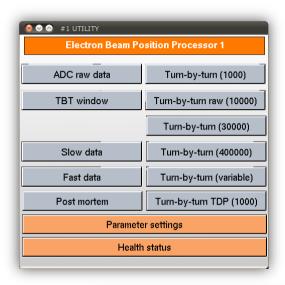
- To meet the requirements for the latest storage rings
 - Increased buffers' sizes
 - Even better linearity (BCD)
 - EPICS CA server (v.3.14.12)
 can be upgraded to E4, when available

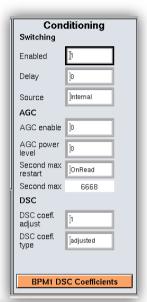

- Use latest technology
 - New Xilinx Virtex 6 chips
 - Intel based computer on module
- New approach for Fast Orbit Feedback Building
 - GDX Module completely available to user: resources, hardware, FDK
 - Utilize GDX Module resources for complete FOFB application
 - Output the magnet corrections directly to power supply controllers

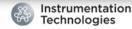


The Elements

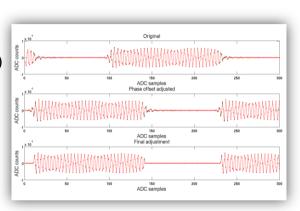
- Hardware
 - The chassis & computer
 - The BPM processor
 - The Timing module
 - The GDX module
- Software
 - Libera BASE
 - EPICS casrv
- Application
 - Initial release (2.00)
 - Release 2.20
 - FOFB custom

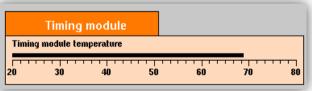





Functionalities (1)

- ADC, Turn-by-turn, Fast data, Slow data
 - On-trigger, on-next trigger, on demand
 - Acquisition offset
 - Timestamps
- Interlock, Postmortem
 - Physical connectors
 - Software notifications
- Signal conditioning long-term stability
 - Crossbar switch
 - DSC with full coefficients' monitoring
 - DSC snapshots with predefined store interval (and timestamps)
 - Automatic Gain Control

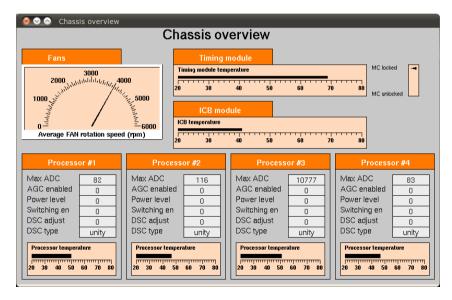




Functionalities (2)

- Time-domain processing (TDP)
 - In-depth view of the ADC raw data for position calculation (TBT window)
 - Fine adjustment of the TBT window content (ADC mask array)
 - Phase offset adjustment based on the TBT window data
 - Drastically improves performance with single bunch
- Health, temperatures, fans
 - Full control over fans' rpms
 - Numerous temperature & voltage sensors on each connected module
 e.g. 2/4 configuration = 70+ sensors!
 - The overall platform daemon logs the health at predefined intervals
- Control system interface
 - EPICS Channel Access server (EPICS base 3.14.12)
 - Interface to support various control systems is foreseen

The User Interface


- EDM screens
 - All important machine-related parameters at a glance
 - Buffers, streams acquisitions
 - Parameter value settings
 - Health monitoring and control
- Command line access
 - Full access to all parameters
 - Extra low-level libera utilities
 - Firmware, software upgrades
 - Local access

Simple to Monitor and Control

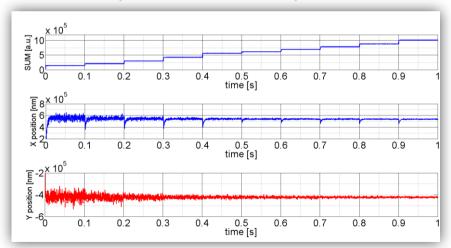
- EPICS interface included
- 90% functionalities covered by enclosed EDM GUI
- What can it do?
 - Control the parameters, fans
 - Monitor the health, PLL, other status
 - Fine adjust the offsets, parameters
 - Interlock setting & monitoring
 - Postmortem buffer control & read-out
 - Access to all data streams & buffers

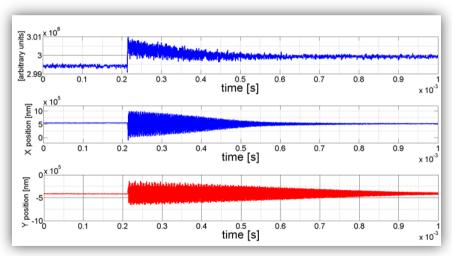
A simple EDM screen to keep the general overview over Libera Brilliance+ chassis at one place.

Initial Tests at Taiwan Light Source, December 2010

- Tests were done for the new TPS
- The first two Brilliance+ processors
- All data buffers & streams available

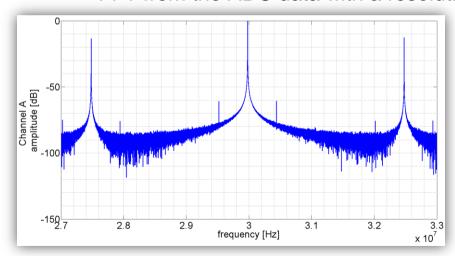
Civil works as of December 8, 2010.

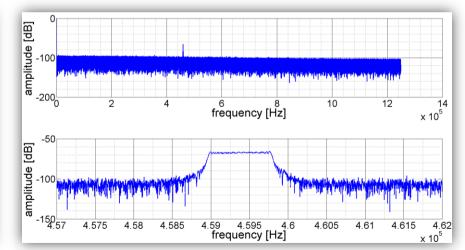

Libera Brilliance+ at TLS

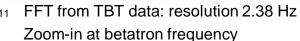


Injection Monitoring

- First 30 seconds of the injection was recorded with FA data
- Detailed look with turn-by-turn data
- No position/current dependence!

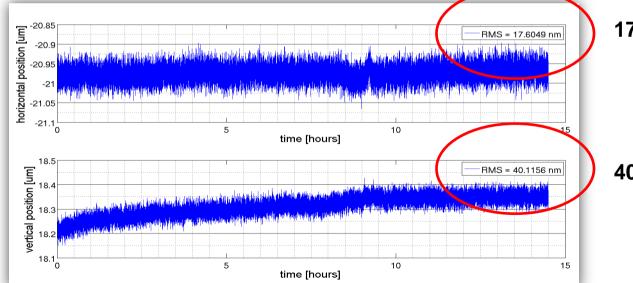



10


Huge ADC Buffer

- The excitation in the vertical direction at betatron frequency
- 1048576 ADC samples recorded on-trigger (= 22310 turns!)
- FFT from the ADC data with a resolution of 112 Hz!

FFT from ADC buffer data: resolution 112 Hz!



Long-term Stability Measurements

- ~361 mA current, normal user run, top-up
- Temperature: room temperature, 1 degC p-p, just normal air-conditioning

Switching and DSC enabled throughout the test

17.6 nm RMS

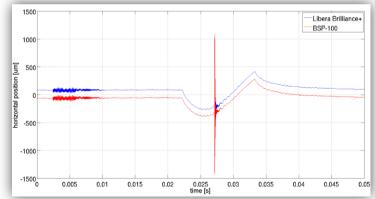
40.1 nm RMS

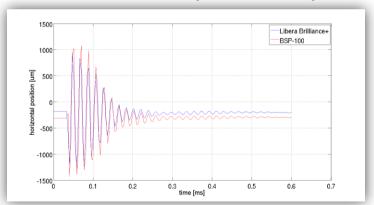
Initial Tests at Advanced Photon Source, January 2011

13

- Calibration of the Libera Photon using Libera Brilliance+ (2 processors)
- FFT spectrum comparison of BSP-100 and Libera Brilliance+
- Simultaneous top-up injection with 3 instruments

Libera Brilliance and Libera Brilliance+ installed in sector 35

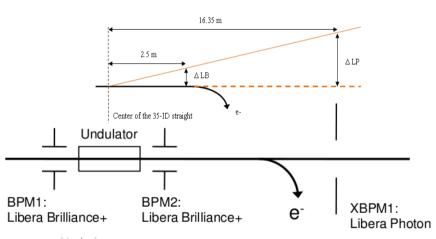

Advanced Light Source in January 2011

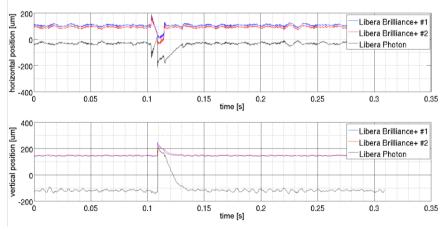


Top-up Injection Acquisition

- Comparison of BSP-100 and Libera Brilliance+
- Perfect match of both acquisitions turn-by-turn data
- BSP-100 could only provide turn-by-turn data in one direction at a time
- Libera Brilliance+ provided access to FA data simultaneously with turn-by-turn data

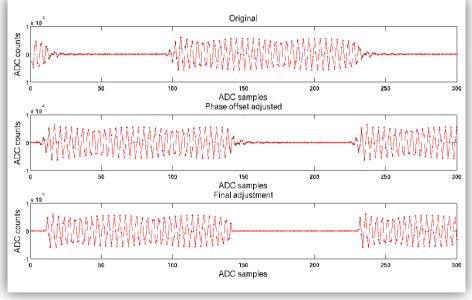
Top-up injection: horizontal direction


Zoom-in in turn-by-turn data

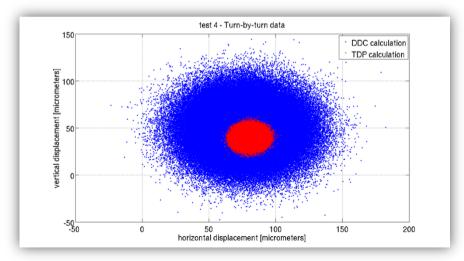


Simultaneous acquisitions

- Simultaneous acquisition with 2 Libera Brilliance+ processors and Libera Photon (10 kHz data)
- Steps in the horizontal photon beam position most probably made by fast feed forward correction trying to compensate the injection septum transients.

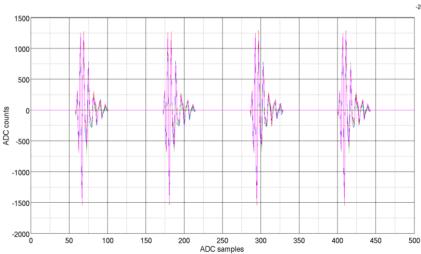

Injection as seen in the electron & photon beam

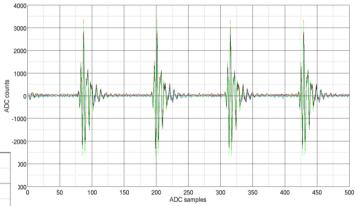
Time Domain Processing


- Turn-by-turn data path only in Libera Brilliance+!
- Fine adjustment of the TBT window
- Fine adjustment of ADC mask
- For special fill patterns:
 - Single bunch
 - Pilot bunch
 - Variable partial fill

Time Domain Processing – Results in Lab

- Simulate single bunch with pulse generator (2 ns width @revolution frequency)
- Comparison of the DDC vs TDP turn-by-turn position calculation
- RMS improvement factor is 4-5 in benefit to TDP!


DDC (blue) vs TDP (red) position data (X/Y)

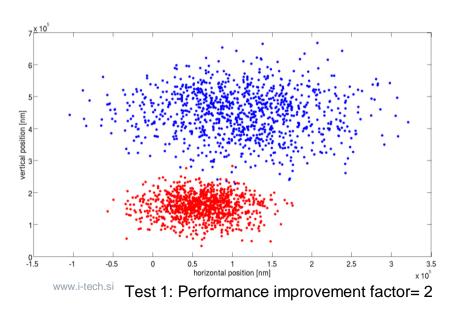


Time Domain Processing – Test at DORIS

- Single bunch fill
- Max ADC = 3500 (low!)
- Power level -44 (low!)
- Switching OFF

Raw ADC data

Adjusted TBT window

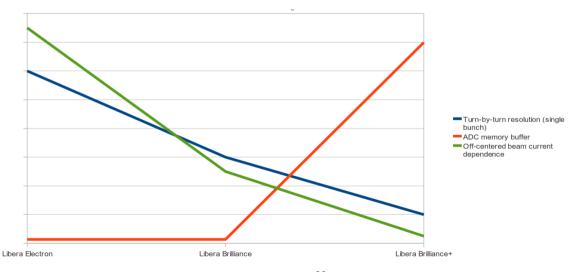


Time Domain Processing – Results at DORIS

19

DDC performance: 118 um / 115 um; 73 um / 70 um

• TDP performance: 35 um / 36 um


Security of the security of th

Test 2: Performance improvement factor= 3.3

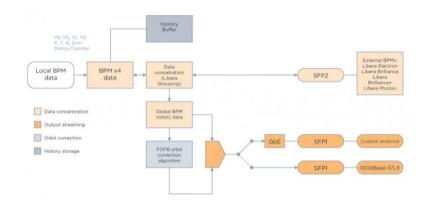
Performance, Functionalities,...

- >1000 times larger ADC buffer
- N-factor improvement for the turn-by-turn data with single bunch
- Significantly better off-centered beam current dependence performance

Future Outlook

The Fast Orbit Feedback Application

- Implementation in the on-board Virtex6
- Grouping of the global orbit data
- Feedback calculation
- Direct output to corrector magnet power supplies


User Application Development

- Model the function in Matlab
- Use signals and parameters provided by Libera BASE
- Implement the new function in the application using SDK

Social networking

Libera Brilliance+ does not have a Facebook page... but can

- Output notifications to Twitter
- Provide web access
- Be accessed by a wireless connection

Conclusion

- Wide range of functionalities
- Excellent long-term stability
- High flexibility for Fast Orbit Feedback Building

Tutorials on Web

See tutorials on

http://www.i-tech.si/accelerators-instrumentation/libera-brilliance-plus/tutorial

... or search for "Libera Brilliance+" on Youtube.

