

Tomaž Karčnik, Borut Baričevič, Vladimir Poučki, Sebastjan Zorzut

Libera Family Development Potential

tomaz@i-tech.si

24-25 September 2007

Current activities

- Libera capabilities
 - Light source BPP
 - Hadron BPP
 - Bunch-by-Bunch feedback
 - Playground for R&D work
- Ongoing activities, applications
 - Pulsed mode BPP (FELs, ERLs)
 - LLRF
 - Embedding user FPGA core applications

Single pass BPM

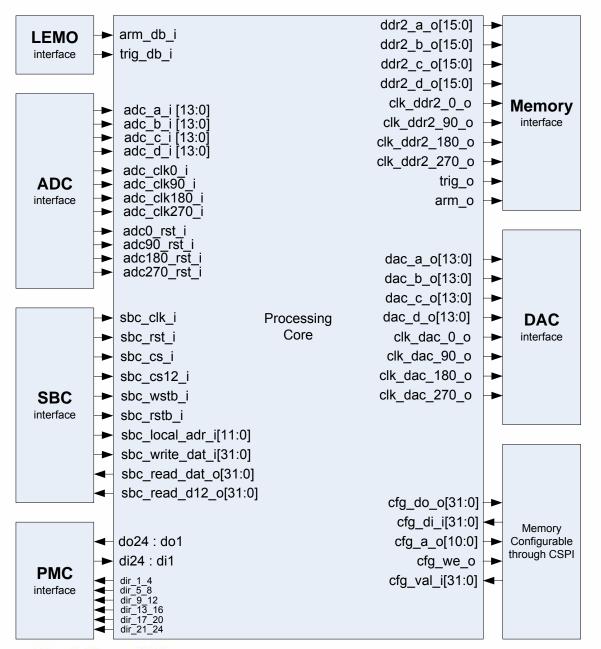
- Developed for the 4th generation of light sources
 - Pulsed mode vs. (gated) CW
 - 1.3 8 GHz vs. 500(350) MHz
 - fs vs. ns time scale/syncing
 - Feedforward vs. feedback
 - Direct sampling not possible yet
- Modifications ranging from RF electronics all the way up to CS interface
- Presentation by Borut Baricevic

FPGA

- Not many/all users have the ability/possibility to dive into the FPGA programming world:
 - Linus Torvalds when asked what he'd start doing if he moved out of kernel programming: I'd really love to do FPGA's, but I've always been too busy to really sit down and start learning.
- Obviously an interesting field
- Unfortunately, requires daily activities to keep the cutting edge

FPGA devel. kit

- Development kits
 - Simplify and speed-up the development cycle at the expense of lesser optimization
 - Getting new people on board
- Hardware and application specific environment for integrating user code
 - Verilog, VHDL (EBPP: Diamond, Soleil)
 - System Generator for Simulink (BBB: ESRF)
 - Other sources: Matlab & toolboxes,


FPGA devel. kit

- The kit does not relive users from understanding the FPGA concepts and the process of FPGA design building: clock management, constrains, ...
- Ideally: Matlab/Simulink user can do FPGA development
- Verified interfaces to HW are included
 - High level programming not suitable for interfacing to hardware

FPGA devel. kit, contents

- Contents:
 - Top module source code
 - Constraints
 - IP cores
 - Placeholders for user cores: Verilog and System Generator
 - System Generator demo application and configuration
 - Build scripts including configuration
- Live demo of FPGA development kit for BBB/LLRF in later session

FPGA core connections

FPGA devel. kit demo

- Live demo:
 - Full BBB application
 - Demonstrated earlier today
 - Integration of System Generator
 - Full development cycle
 - Minus FPGA build process, typ. 45 min
- Presentation by Vladimir Poucki

LLRF

- LLRF is gaining importance in 4th generation light sources
- LLRF is not yet "clean, well defined" application from the implementation point of view
 - I/Os vary in number and function
 - Various configurations: 1:1, 1:n
 - Feedback device: playground for control algorithms
 - Similar to robotics

LLRF and FPGA

- LLRF core digital control algorithm typically implemented in the FPGA
 - optionally a combination of (AS)ICs, DSPs
- FPGA
 - Parallel, hard real-time, reliable operation of "arbitrary" complexity
 - High learning threshold, slow development cycle, lot of work required to get the whole system operational
 - Fast interfaces (ADC, DAC, DDR2/3 RAM), programmable delays
 - Merging 3rd party code: user code, comm. cores

FPGA devel. kit demo

- Live demo:
 - Simplified LLRF application
 - Painless integration of System Generator and Instrumentation Technologies code, cores, tools, scripts,, a.k.a. FPGA development kit
 - Full development cycle
- Presentation by Sebastjan Zorzut