

Diagnostics and Synchronization Requirements For Linac-Based FELs

Boris Keil

Paul Scherrer Institut

Libera Workshop 2010

14.10.2010

Contents

Introduction Electron Diagnostics Photon Diagnostics Synchronization Summary

Disclaimer: Arbitrary selection of systems needed for & used at linac based FELs. RF-BPM-biased.

4G FEL Example: SwissFEL

- L ~ 700m. 5.8GeV.
- Trains of 2-bunches (1 per undulator).
- ~28ns bunch spacing, 100Hz.
- 10-200pC / bunch.

4G Linac FEL Light Sources vs. 3G Rings

- 4G: e⁻ & photon bunch length ~fs (3G: ~ps): ~1000x better timing/synchronization. Longitudinal diagnostics vital.
- 4G diagnostics is single-bunch, for non-Gaussian bunch profiles (3G rings: "Averaged/CW" diagnostics for Gaussian beams).
- 4G Users do pump-probe on fs-scale with "naturally not-so-stable" SASE beam: Single-bunch photon beam diagnostics & data archiving vital ("tag & sort").

4G FEL Trend: Short Bunches, Low Charge

- Initially: FELs wanted Q~1nC bunch charge.
- Drawback: Longer electron/photon bunches (~100fs).
 SASE: several longitudinal slices lase independently of each other: Longitudinal photon pulse structure has multiple fluctuating spikes.
- Lower charge: Shorter bunches, less spiky photon pulse structure (ideally: single-spike) → better time resolution for users. And: Lower emittance → still many photons (# not ~Q).

Short-Bunch Low-Charge Operation (Cont'd)

- Lower charge (SwissFEL 10pC, E-XFEL/LCLS 20pC): SNR for diagnostics gets worse.
- And: Beam gets smaller (~10µm) & shorter (<10fs).
 Need even better resolution than at high charge.
- FEL projects chose 5x-20x lower charge during/after diagnostics (BPM, ...) development.

AND went from 1-bunch to 2-/multi-bunch operation, 8-30ns bunch spacing ...

Introduction Electron Diagnostics Photon Diagnostics Synchronization

Summary

RF BPMs: Typical Requirements

Depend on location:

Injector/linac	~10µm noise/drift (or more) often O.K. (bad trajectory: emittance growth,).
Undulators	<1µm noise/drift for trajectory alignment (SASE/seeding) & feedback.
Spectrometer & Bunch Compr.	Depends on optics & location. ~10µm noise/drift (~0.01% dE/E) often O.K.

But: Less BPM noise/drift in injector/linac useful:

- Locate & eliminate beam perturbation sources.
- Measure beam size: BPM = wire scanner reference.

Libera Workshop 2010

RF BPMs: Trajectory Perturbations & Feedback

- Source suppression vital for ~100Hz single-bunch machines: Trajectory feedback only corrects random perturbations < ~10Hz.
- Feed-forward for non-random perturbations.
- Long bunch trains allow intra bunch train feedback (IBFB).

Example: E-XFEL Intra Bunch Train Feedback

RF BPMs: Common Types

Beam Position = k * $(V_{x1}-V_{x2})/(V_{x1}+V_{x2})$. Factor k (~10mm) determined by geometry.

Boris Keil, PSI

RF BPMs: Common Types (Cont'd)

Reference cavity: 3.3GHz Dual-resonator. Dual-resonator. signal ~ bunch charge waveguide connectors, coaxial connectors. mode-selective mode-selective **Position cavity:** (LCLS, 11.4GHz) (E-XFEL, 3.3GHz) 3.3GHz signal ~ position * charge Visible: Vacuum. D. Lipka/DESY, based couplers on SCSS design **Mode-selective** couplers suppress

Beam Position = k * $(V_{Pos_{Cav}} / V_{Ref_{Cav}})$. Factor k: Not fixed, variable via attenuator: Zoom!

Boris Keil, PSI

Libera Workshop 2010

undesired other modes

RF BPMs: Common Types (Cont'd)

- Buttons: Moderate resolution @ low charge. O.K. with long bunch trains (E-XFEL): Averaging.
- Striplines (matched + resonant): Better low-charge SNR that buttons (resonant: >10x). O.K. for low-charge single-bunch injector/linac/transfer lines.
- Single-resonator cavity + normal couplers: Commonmode suppression limits performance.
- Dual-resonator cavity + mode-suppressing couplers: Optimal performance (common mode suppression, drift, ...), highest SNR.

Undulator BPM for LCLS, SCSS, E-XFEL, ...

Example: E-XFEL Cavity BPM

Libera Workshop 2010

RF BPMs: Common Types (Cont'd)

Pickup	Button	Matched Stripline	Resonant Stripline	Cavity	
Spectrum	E(f) M D f				
Monopole Mode Suppression	Modal (hybrid) / electronics	Modal (hybrid) / electronics	Modal (hybrid) / electronics	Modal (coupler), frequency, phase (sync. det.)	
Typical RMS Noise, 10pC, <u>*20mm pipe*</u>	~100µm	<60µm (scaled to 20mm pipe)	<4µm (estimated for 20mm pipe)	~1µm	
Typical Electronics Frequency	300800MHz	300800MHz	500-1500MHz	3-6GHz	

"Typical" noise: Examples from some existing machines & electronics, not theoretical limit ...

Typical RF BPM Electronics (Simplified)

Direct sampling (striplines, buttons)

Example 1: Resonant Stripline BPM System

- Position noise: 7µm @ 5-500pC, 15µm @ 2pC (16mm geom. factor, 45°).
- Range >20mm peak-peak (38mm pipe). Charge noise: <5fC @ 0.5pC.

Resonant Stripline BPM System (Cont'd)

Example 2: E-XFEL Cavity BPM Electronics

- PSI in-kind contribution to E-XFEL.
- Comment: Good resolution with tiny range is easy but of little use: Specify range.
- Low drift & good linearity for large charge range are often the bigger challenge.

GPAC

Control, Event

E-XFEL Cavity BPM Electronics (Cont'd)

Transverse e-Beam Profile Monitors

- Ce:YAG ($Y_3AI_5O_{12} + 0.2\%$ Cerium):
 - Scintillator, decay ~70ns.
 - Saturates at higher charge densities & energies (100MeV: ~0.01pC/µm²)

OTR:

- Foil (metal or metal-coated, e.g. Al).
- Linear, immediate response:
 - Good for short bunch spacings.
 - Problem: Emitting coherently (COTR: I ~ N_e²) when (tiny) partial micro-bunching. Messes up profile image. Problem for most (all?) linac FELs.

beam profile

Transverse e-Beam Profile Monitors (Cont'd)

Wire Scanner:

- Working horse for COTR-plagued FELs
- Not single bunch:
 - Use RF BPMs to determine (jittering) bunch center-of-charge position relative to wire
 - Use camera etc. to monitor absolute wire position (vibrations, ...)

FELs are in need of a good single-shot/-bunch profile monitor: Linear, response <<10ns, no COTR,

Transverse e-Beam Profile Monitors (Cont'd)

Saturated Ce:YAG: Wrong profile, overestimated beam size

Electronics: Screens + COTS cameras. Challenges: 10-30ns bunch spacing, >100Hz image processing (fit) & archiving, ...

Beam Loss Monitors: Common Types

Scintillator / Cherenkov fibers + photomultiplier/-diode:

- Frequently used.
- Flexible geometry (wind around beam pipe, ...).
- Cherenkov: Fast, locate beam loss by photon-TOF.

Semiconductor diodes / gas ionization chambers / ...:

 Proportional mode (large losses) or avalanche / threshold mode (count single particles).

Applications:

- e-beam profile measurement with wire scanners
- Machine protection, ...

Beam Charge Monitors

- Wall current monitor (WCM), toroid:
 - Simple, robust. Often noise issues @ very low charge.

Faraday cup:

• Simple, destructive.

Cavity:

• Can be made sensitive or insensitive to dark current.

RF BPMs:

- Resonant striplines, cavities, ...: Good resolution at low charge (typ. few fC or ~0.1%)
- Issues: Abs. calibration, drift, position dependence.

: ω

Absolute: Q vs.

Relative: Beam loss,

Example: Charge Meas. with Reson. Stripline

Longitudinal Diagnostics: Few Examples ...

Beam arrival time (BAM):

 SwissFEL: 20-40GHz RF button/waveguide pickup in beam pipe. Cable to electro-optical modulator (EOM). Arrival time ~ pickup voltage (near zero crossing) ~ laser pulse polarization/intensity. Resolution <10fs.

Translates longitudinal to transverse dimension.
 Measures sliced emittance & bunch length, E-profile.

Longitudinal Diagnostics (Cont'd)

Spectral decoding:

• e-beam modulates polarization of chirped laser pulse in EO crystal. Spectrometer: Bunch length, arrival time.

Introduction Electron Diagnostics **Photon Diagnostics** Synchronization

Summary

Photon Diagnostics

Existing X-ray Diagnostics: LCLS, ...

- Profile (destructive): Ce:YAG screen + attenuators.
- Energy spectrum: Monochromator.
- Pulse energy: From electron energy loss & gas (N₂) fluorescence.

Photon Diagnostics

To-Be-Developed FEL X-ray Diagnostics

Non-invasive single-bunch measurement of X-ray

- Energy spectrum,
- Pulse length / longitudinal profile (sub-fs),
- Arrival time relative to pump laser,

over full X-ray energy & intensity range (~0.1...15keV).

•

. . .

Introduction Electron Diagnostics Photon Diagnostics Synchronization

Summary

Synchronization of Machine Subsystems

- Synchronize accelerator systems (LLRF, gun/seed) laser, ...) well enough to achieve reasonably (cost, man power) small FEL photon beam fluctuations.
- "If you can't control it, at least measure it.": Deal with remaining fluctuations by providing single-bunch photon beam arrival time (relative to pump laser) & other data (pulse energy, ...) to users.
- If lack of photon diagnostics: Estimate photon from electron beam properties (e-BAM, ...).
- Feedback/feed-forward (BAM, ...) reduces jitter/drift.

Example: SwissFEL Synchronization System

Libera Workshop 2010

14.10.2010

SwissFEL Synchronization System (Cont'd)

An RF station gets its reference signal over a dedicated optical link. An "RF" block in the drawing represent the number of RF stations indicated below.

S. Hunziker et al., SwissFEL CDR

SwissFEL Synchronization System (Cont'd)

Beam Jitter	arrival time [fs]	peak current [%]	energy [%]	
Expected Parameter Jitter				
For 0.015 deg S-Band Phase jitter:	4.8	3,4	0.002	
For 0.012 % S-Band Voltage jitter:	5.9	0.3	2.10-4	
For 0.06 deg X-Band Phase jitter:	0.3	9.1	0.004	
For 0.012 % X-Band Voltage jitter:	1.1	0.02	6·10 ⁻⁵	
For 0.03 deg Linac 1 Phase jitter:	1.7	0.5	0.0015	
For 0.012 %Linac 1 Voltage jitter:	2.3	0.07	2·10 ⁻³	d 11
For 0.03 deg Linac 2 Phase jitter:	0.007	0.001	5.10-4	
For 0.012 % Linac 2 Voltage jitter:	0.015	4·10 ⁻³	1-10 ⁻³	Linac 1
For 0.03 deg Linac 3 Phase jitter:	9·10 ⁻³	9-10-4	6-10-4	
For 0.012 % Linac 3 Voltage jitter:	0.02	3-10-4	1-10 ⁻³	
For 2 pC Charge jitter:	2.4	5.9	6.10-4	
For 30 fs initial arrival time jitter:	1.1	3.6	9·10 ⁻⁵	} Gun
For 0.01 % Initial Energy jitter:	4.2	0.1	3.10-4	
For 0.001 % BC1 angle jitter:	0.034	0.7	3.10-4	
For 0.001 % BC2 angle jitter:	4.10-4	0.09	4.10-5	S. Hu
total	9.701	11.9	6-10 ⁻³	Sw

-3

unziker et al., vissFELCDR

Boris Keil, PSI

Fs-Scale Pump-Probe User Experiments:

- Measurement of pump-probe laser to FEL pulse delay: Resolution/drift ideally < photon pulse length.
- Infrequent absolute calibration of delay measurement (low BAM drift ...) desired.
- E-XFEL: 1-2fs photon FWHM for @ 20pC (FLASH: 2fs). BAM with sub-fs jitter/drift desired ...
- BAM performance limit depends on signal frequency: Optical (PHz) has more potential than RF (GHz).

Measure FEL Pulse To Pump-Probe Laser Delay

Introduction Electron Diagnostics Photon Diagnostics Synchronization Summary

Summary

- Electron diagnostics for linac-based FELs more mature than photon diagnostics. Single-bunch photon diagnostics & data archiving vital for users.
- 4G (vs. 3G) light sources: Larger system variety, often very small quantities. €xception\$: BPMs, LLRF, Sync., … Less common standards, still lot of R&D. Challenge (opportunity?) for companies …

And beam loss monitors. Idea for product name: "Libera Lost & Found" ©

- FEL machine designs & requirements still evolving (even for already operational machines ...).
- 4G FEL diagnostics design is (still) "shooting at moving & shrinking targets". Waiting for sub-pC 100-as beams ...

Thank you for your attention!

Supplementary Slides ...

<u>RF BPMs: Pros & Cons of Different Types</u>

	Button	Matched Stripline	Resonant Stripline, Normal Coupling	Single Cavity Normal Coupling	Two Cavities, Hybrid Coupling
Signal/Noise	-	<u> </u>	+	+	+
Monopole Mode Suppression	-	-	-	<u> </u>	+ + mance
Single-Bunch Reso- lution (@ low charge)	-	-/+	+	+	t t perfor
Electronics Drift	<mark>-/+</mark>	<u> </u>	<u> </u>	<u> </u>	×+./
Weight 10mm pipe	++	+	+	+	+
Weight 40mm pipe	++	<u> </u>	- / +	<u> </u>	et + / -
Design Effort	++	<u> </u>	- / +	<u> </u>	l udg
Fabrication Costs	++	<u> </u>	<u> </u>	<u> </u>	<mark>م</mark> + / –
Tuning Effort	+ +	++	-/+	+	+

Resonant Stripline BPM Electronics (Cont'd)

Libera Workshop 2010