Fast Orbit Feedback (FOFB) at Diamond

Guenther Rehm, Head of Diagnostics Group

29/06/2007

FOFB at Diamond

Ground, Girder and Beam Motion

Fast Feedback Design Philosophy

- Low latency:
 - Ensures high bandwidth for feedback, good suppression
 - Major contribution to latency should be unavoidable group delays of filters
- Robust:
 - FOFB has to perform with components failed
 - Try to avoid single point of failure
- Accessible for maintenance / development:
 - Have only what is necessary inside the FPGA
 - Implement feedback algorithm on PowerPC boards
- Truly global:
 - No slow orbit feedback to run in parallel
 - RF frequency correction also to be calculated

Measurement Resolution

Туре	Application	Rate	BW	RMS X	RMS Y
Slow Acq.	Slow orbit feedback, response matrix measurement	10 Hz	4 Hz	45 nm	45 nm
Fast Acq.	Fast orbit feedback	10 kHz	2 kHz	140 nm	190 nm
Turn-by-turn	Tune measurement, betatron amplitude and phase	534 kHz	267 kHz	1.5 µm	3 µm

All values are typical for RMS of 10000 samples in lab tests

29/06/2007

FOFB at Diamond

FOFB Overview

- Libera EBPM produces FA data 10072 S/s (2 kHz 3dB bandwidth)
- RocketIO on Libera sends and forwards data at 2.12 Gbit/s using in house developed "Communication Controller"
- Communication is broadcast, no routing information
- PMC card with RocketIO receives data and transfers via DMA to CPU memory
- Dedicated CPU board (1GHz PowerPC MVME5500) performs matrix multiplication and feedback controller
- Resulting corrector PS values are written through VME into PS controller

Fast Orbit Feedback

FOFB Installation (one of 24 cells)

FOFB connections

SC/MC/Trigger/PM fan out

Galvanic SFP connections

Multi mode fibre to PS rack

Single mode fibre to other CIAs

PMC interface to FOFB network

29/06/2007

FOFB at Diamond

Global Connections of FOFB

FOFB at Diamond

FOFB Latencies / Bandwidth

29/06/2007

FOFB at Diamond

11

FOFB Performance

29/0

bnc

12

FOFB Suppression

FOFB Performance on XBPM

14

29/0

Integrated position noise

125mA, 2/3 fill, lab test

29/0

nd

16

Libera Tuning

- Libera is a complex system with many clocks interacting
- Clocks and ratios can be adjusted or routed from different sources
- Some things can be done purely in software (e.g. FIR and IIR filters in FA data processing), others require FPGA changes (e.g. sync switching with external MC)
- Instrumentation Technologies take experience and solutions from Diamond on board, if slowly

FIR filter improvement

29/0

200

Total filter response (FIR+IIRs)

nd

Switch Delay Optimisation

bnc

20

29/0

BCD and ? on XBPMs

ond

29/0

BCD with "real" beam

Measured on 48 primary EBPMs

29/00/2001

bnc

22

BCD with phase shift of one input

29/06

nd

Cable Length Differences

29/06/2007

FOFB at Diamond

Synchronisation of FA data

- All Liberas have to produce FA data synchronously
- As FA is decimated from sample clock, all sample clocks need to be same frequency and decimation needs to be aligned
- Sample clocks are locked to externally supplied revolution clock using software daemon (Imtd)
- Synchronisation is achieved by announcing through control interface and supply a single start trigger on trigger input.
- Same method is used to start output (and time frame counter) of FA data on fast network synchronously

Python Synchronisation Script

S)	ync BPMs	
Checking active BPMs		
Lhecking active EVRs Sunchronising machine clocks		
Disabling events		
Arming MC trigger		
Triggering MC synchronisation	commands to all	
Pausing before test Checking machine clocks	24 event receivers	
Disabling events		
Triggering	commands to all	
LB: 25285049		
ISE 7078534		
Restoring event processing		
Resynchronising Fast Feedback		
Iniggering synchronised start		
press return		
		E.

FOFB at Diamond

Starting and Stopping FOFB

- Calculations run distributed on 24 CPUs
- Synchronous starting / stopping is essential as otherwise correction is applied on part of correctors for some time
- All feedback CPUs communicate status (stopped, ready, running) through fast network
- When all are ready, feedback starts on next cycle
- When any is stopped, all stop on next cycle
- Stopping can be caused by:
 - command
 - out of limits for total corrector current
 - out of limits for corrector current step (around 2 s average)
 - out of limits for beam position

Calculating a Pseudo Inverse Response Matrix

- In principle, Diamond has 168 EBPMs and 168 correctors each plane, so decoupled response matrices are 168x168
- Square matrices could be directly inverted
- However, system should also work with fewer EBPMs or correctors
- Use singular value decomposition for pseudo inversion
- Orbit motion can then be transformed into "mode space"

Response Matrix Eigen Values

Orbit Motion in Mode Space

Inversion and Conditioning

29/0

ond

Summary

- Libera integrates well into a FOFB system
- Communication Controller performs reliably and without additional hardware
- Feedback calculations on CPU have been relatively easy to commission
- Effective suppression of orbit motion demonstrated
- Running in user mode since 22 July

Acknowledgements

- Diagnostics: Alun Morgan, Graham Cook
- Controls: Michael Abbott, Isa Uzun, James Rowland, Mark Heron
- Accelerator Physics: Ian Martin, Riccardo Bartolini
- External: Stephen Duncan (OU), Andrej Terebilo (SLAC), Leo Breuss (SCS)

