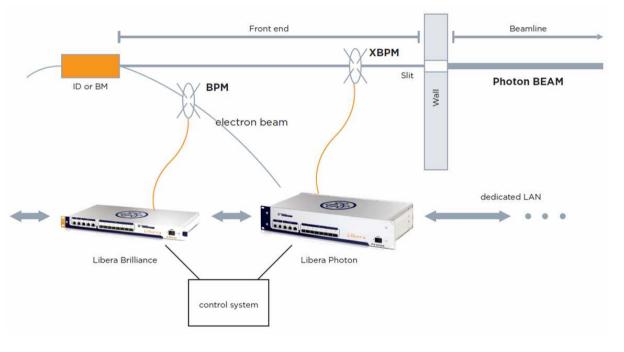


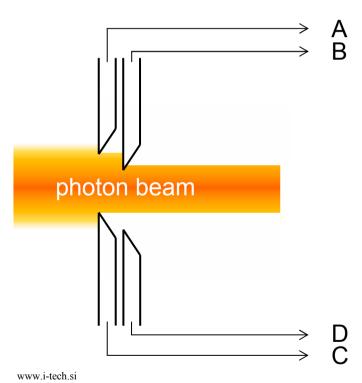
Libera Photon

Peter Leban, Libera Workshop, Solkan, 14 October 2010 peter.leban@i-tech.si


Contents

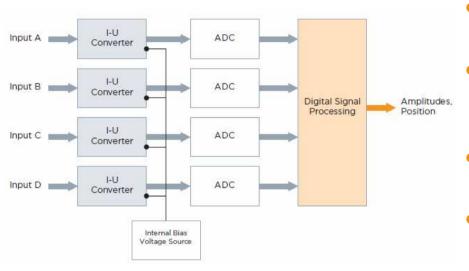
- Photon Beam Position Processor requirements
- How it works
- Digital signal processing
- Data paths
- Software interfaces
- Test cases

Photon Beam Position Processor – Requirements


- High precision, wide range measurement (pico to miliAmpers)
- Compatibility with sensors
- Position calculation formulas
- Synchronization with electron BPMs

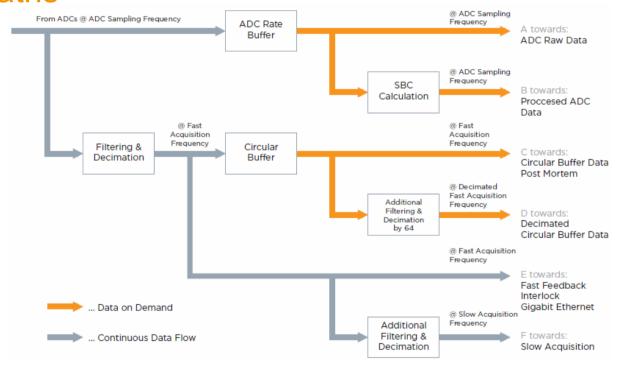
Instrumentation

| Production |


How It Works

- 2 sensor configurations (ID or BM)
- up to 1.85 mA per channel
- internal BIAS voltage source (up -150 V)
- external BIAS voltage source supported
- geometry factors included in the DSP

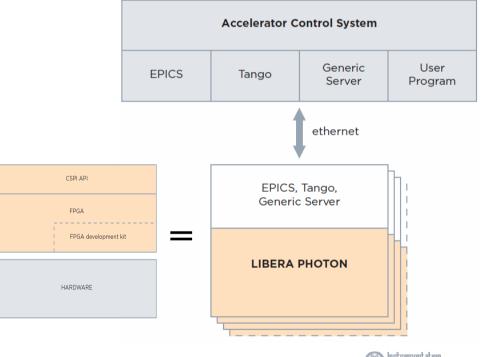
Digital Signal Processing


- 24-bit ADCs @ ~ 100 kHz sampling rate
 - compensation of internal and external influences
 - internal calibration source
- automatic range control
- synchronization with machine revolution frequency (optional)

Instrumentation

| Production of the second of the second

Data Paths



Software Interfaces

The interface to the Control system

- EPICS driver
- Generic server
- Remote access = local access
- Software sources available

Libera Photon

- 4 current inputs / 7 measurement ranges
 - Current-to-voltage conversion
- Precision in the nm range
- Based on proven platform
- Low beam flux dependence
- Excellent noise floor / RMS

Performance

Range	Bandwidth	Current resolution	Position resolution	Current dependence
±2 nA	0.5 kHz	3 pA	3 μm	1.2 μm
±20 nA	1 kHz	4 pA	0.3 μm	0.8 μm
±200 nA	2 kHz	7 pA	0.07 μm	0.7 μm
±2 μA	2 kHz	20 pA	0.02 μm	0.6 μm
±20 μA	2 kHz	180 pA	0.02 μm	0.5 μm
±200 μA	2 kHz	1.8 nA	0.02 μm	0.3 μm
±1.85 mA	2 kHz	18 nA	0.01 μm	O μm

Test Cases

Various performance / functional testing (SOLEIL Synchrotron)

Beam current dependence, RMS values, BIAS voltage source issue discovered & fixed, speed of FOFB correction, parallel tests with electron BPMs (Libera Electron)

Test with CVD sensors (Swiss Light Source)

4 plate sensor, nA current ranges

Performance test in the front-end (KEK PF)

Different positions (sensor #1, #2), angle measurement, beam bumps

• The effect of FOFB on photon beam (NSRRC, SOLEIL Synchrotron, ELETTRA)

The RMS, FOFB effectiveness, frequency spectrum

First References

- CLS (Canada)
- DIAMOND Light Source (Great Britain)
- KEK PF (Japan)
- KIT ANKA
- NSRRC TLS (Taiwan)
- NSRL HLS (China)
- PSI SLS (Switzerland)
- SOLEIL Synchrotron (France)

Conclusion

- Usage on front-end XBPM sensors
 - plug and play
- Usage on other sensors types (e.g. CVD, ionization chamber)
 beamlines, close to experiment
- Fast Global Orbit Feedback ready

full synchronization with electron beam position processors (Libera Electron / Brilliance / Brilliance+)

