

Introduction of the Solaris facility and the status of operation of the Libera Brilliance+ BPM system

Jacek Biernat

SOLARIS National Synchrotron Radiation Centre

Contents

- Introduction of the SOLARIS
- Present and the future of SOLARIS
- Machine Learning, Time Series analysis, Forecasting/ (possibly anomalous behavior detection) with neural networks
- Conclusions

The thermionic electron radio frequency (RF) gun is a 3 GHz RF cavity. The source of the electrons is BaO. The pulsed electric field bunches an electron beam and accelerates it up to 2.8 MeV.

The linear accelerator (linac) consists of six 5 m long S-band travelling wave accelerating structures combined in three accelerating units. Each accelerating unit contains one SLED (SLAC Energy Double`r) cavity and **two linac** structures and is powered by an RF amplifier. Linac is 40 m long and delivers maximum beam energy of 600 MeV.

The transfer line composed of dipoles with a total bend angle of 27 degrees, which bend the beam in the vertical plane, as well as six focusing quadrupoles. The last element is a septum magnet, which connects the injector with the storage ring.

The Solaris accelerator facility – electron storage ring

Energy	1.5 GeV	
Max. current	500 mA	
Circumference	96 m	
Main RF frequency	99,93 MHz	
Max. number of circulating bunches	32	
Horizontal emittance (without insertion devices)	6 nm rad	
Electron beam size (straight section centre) $\sigma_{x_{j}} \sigma_{y}$	184 µm, 13 µm	Additional coils on the sextupoles
Electron beam size (dipole centre) σ _{x,} σ _y	44 µm, 30 µm	Defocusing
Max. number of insertion devices	10	quadrupoles Gradient dipole magnets with the pole face strips
Momentum compaction	3.055 x 10 ⁻³	with sextupole content
Total lifetime of electrons	13 h	
SOLARIS CENTRE		5 www.synchrotron.pl

Current Status and what will be... in the near future

Decay mode of operation

- Max energy of 1.5 GeV
- Slow orbit correction
- 6 experimental beam lines in operation
- 3 undulators in operation
- A set of diagnostic tools based on python
- Maximum of 32 bunches, single bunch mode possible

Current	Energy	ID Beamlines			BM Beamlines		
274 57 mA	1 50 GeV	Name	Gap	State	Name	State	
214.01 11/	1.00 000	DEMETER	210.00 mm		ASTRA	CLOSED	
Lifetime	I-T product	PHELIX	200.00 mm		PIRX	CLOSED	
14 77 h	4 05 Ab	URANOS	200.00 mm		POLYX	CLOSED	
1-1-1-1	4.00 All	SOLCRYS		under construction	CIRI	under construction	
4H (11) 12H 16H 24H 48H 72H		Storage Ring Status: Beam Stored					
		Current	— Lifetime	Operation Mode: Machine Day			
				Next injections:		1	
			8:00 am and 8:00 pm during User Operation mode				
ooc ooc				2023-02-08	15:52:30 14:22:59 Bitest	s nossible	
	nelno selno selno		an islan	2022-12-21	17:14:40		
07.00	11.00	1200	14.00				

- Orbit tuning and response matrix calculation based on **real time ML**
- Accelerator subsystem diagnostic tools based on time series analysis/ anomaly detection, possible forecasting
- Real time diagnostic tool connected with tango and mySQL hdb++ database
- GPU utilization for calculation speed up
- Small GPU cluster, possibly 3-4 NVIDIA based GPU (QUADRO ~ 32 GB ram per unit)
- Top-up mode (constant filling) and liniac upgrade up to 1.5 GeV

Libera at SOLARIS

We currently operate:

- 36 Libera Brilliance + (connected in 12 chassis) connected to 36 BPMs (one BPM in X,Y plane)
- We use GDX module for fast orbit feedback

4 Libera Photon for beam light measurement

- Mostly stable operation, some freezing on libera Brilliance+ nr 6
- Mediocre state of the documentation when it comes to the config files within the Libera operating system (Ubuntu), big learning threshold especially for <u>newcomers</u>

Long Short-Term Memory networks – usually just called "LSTMs" – are a special kind of RNN, capable of learning long-term dependencies.

Key features:

- ✓ learning memory
- \checkmark Non- sequential
- \checkmark Fast, utilize many cores on a GPU
- \checkmark Low memory consumption compared to BSTS
- √n- dimensional input

The repeating module in an LSTM contains four interacting layers.

Model: "model"

Output Shape	Param #	
[(None, 1500, 2)]	0	
(None, 32)	4480	
(None, 1)	33	
	Output Shape [(None, 1500, 2)] (None, 32) (None, 1)	

Total params: 4,513

Trainable params: 4,513

Non-trainable params: 0

Epoch 1/20 Epoch 1: val loss improved from inf to 1.19001, saving model to model checkpoint.h5 3734/3734 [------] - 143s 38ms/step - loss: 0.2231 val loss: 1.1900 Epoch 2/20 Epoch 2: val loss improved from 1.19001 to 0.99194, saving model to model_checkpoint.h5 val loss: 0.9919 Epoch 3/20 Epoch 3: val_loss improved from 0.99194 to 0.83112, saving model to model_checkpoint.h5 3734/3734 [==========] - 143s 38ms/step - loss: 0.2278 val loss: 0.8311 Epoch 4/20 Epoch 4: val loss did not improve from 0.83112 3734/3734 [------] - 143s 38ms/step - loss: 0.2134 val loss: 0.9903 Enoch 5/20

Checkpoint training method, kills training when the loss does not improve over time

LSTM based forecast on a clean signal of the BPMY and PMX signal coming form Libera Brilliance+

- 1000 s forecast
- 20 runs used for training form injection to beam dump

Anomaly detection

- Anomaly detection based on the trend estimation
- 5 sigma detection threshold (Green band)

Undulator table generation

- n input output forecasting LSTM based ANN
- Single LSTM layer
- Soft sign activation, tanh for recurrent activation
- Linear activation on output
- Single layer (feed forward for stability)
- 10% drop out for future Bayesian systematic studies
- Fast, 1 min trening validation and application on a RTX 5000 quadro

Model: "model' Layer (type) Output Shape Param # _____ input 1 (InputLayer) [(None, 2, 1)] lstm (LSTM) (None, 1280) 6563840 dropout (Dropout) (None, 1280) Ø dense (Dense) (None, 2) 2562 _____________ Total params: 6,566,402 Trainable params: 6,566,402 Non-trainable params: 0

Undulator table generation

- Forecast of 4 corrector electrical currents
- This algorithm will be implemented to work online as a device server
- This will enhance the generation method of the tables (previous 15h of scan)

Undulator table generation

Conclusions

- A lot has been done in the sense of militance and operation, the ring runs at the desired beam intensity
- We are moving into modern python **diagnostics tools**
- Libera solutions operate mostly stable with some hiccups on machine nr 6
- We can provide a valuable contribution into the synchrotron radiation society (~50+ operating facilities in the world) with the planed ML forecasting algorithms