PETRAIV. NEW DIMENSIONS

new BPM system for the PETRA IV project

Libera Workshop April 2023

H.-T. Duhme / DESY Libera Workshop, 15.5.2023

- □ Introduction
- Tests at Petra 3
- □ BPM System for PETRA IV
- □ Fast Orbit Feedback
- □ Pre-accelerator BPM concept

DESY Accelerator Complex (Hamburg, Germany)

User Facilities

PETRA IV

•

Diffraction Limited Storage Ring → Multi Bend Achromat Lattice

- Hybrid 6-Bend Achromat (H6BA) lattice
 - natural emittance: $\epsilon \approx 43$ pm.rad
 - \rightarrow use of damping wigglers: ϵ = 20 pm.rad

general machine layout

operational modes (baseline design)

- brightness mode: 1920 bu. ($\Delta t = 4ns$) in 200 mA
- timing mode: 80 bu. ($\Delta t = 96ns$) in 80 mA

• extensions (under discussion)

I. Agapov *et al.*, submitted to Phys. Rev. Accel. Beams

S

- 3840 bu. ($\Delta t = 2ns$) operation (each bucket filled)
- \circ 40 bu. (Δt = 192ns) in 80 mA \rightarrow ≈ 10¹¹ particles / bunch

Beam Position Monitor System for PETRA IV

(Electronics)

Requirements

Performance

First Turn Steering Tolerances		(Mechanics & Electronics)		< 500 µm
•	 long term stability (measured over 6 days, temperature span ±1°C within a stabilized rack) 		< 1 µm	
•	beam current dependence	(60 dB range, centered beam)		± 2 μm
•	resolution on closed orbit	(200 mA in 1600 bunches @ 1 kHz BW)		< 100 nm (rms)
•	 resolution on single bunch / turn (0.5 mA / bunch) 			< 10 µm

< 500 µm

PETRA IV.

NEW DIMENSIONS

Boundary Conditions

Number of BPMs: about 700

- 9 BPMs per cell / 64 cells \rightarrow 576 BPMs in arcs
- 8 BPMs in short, 12 BPMs in long straight sections

In-house Development: no time and manpower

Libera Brilliance+:

- in use at MAX-IV
- planned for APS-U

commercial solution

- cost / space are important factors
 - ≤ 10 k€ (per channel)

G. Kube et al., Proc. IBIC2019, Malmö, Sweden, WEPP005

DESY Strategy

Stabilization

- well proven technology
- stabilization of cable paths

Development Project with I-Tech

- prototype development of MTCA.4 based BPM-RTM including ADCs work with an digital AMC Board class D1.3
- crossbar switching with separated switching matrix

DESY Lab Strategy: MTCA.4 as technical platform

first Proof-of-Principle Measurements

- lab measurements at I-Tech
- measurements with beam at PETRA III

separate analogue switching part, close as

crossbar switching

possible to Pickups

Measurements at PETRA III

Test Setup

Libera Brilliance+

Long-Term Drift Compensation

long term stabilization scheme including cable paths

• external crossbar switching

performance studies at PETRA III

long-term drift study

continuous mode

timing mode

well within specifications <1 µm

Page 8

Additional Measurements at PETRA III

Closed Orbit Resolution

Single Bunch (Single Turn) Resolution

Beam Current Dependency (SA)

< 100 nm (rms) @ 1 kHz BW

< 10 µm 0.5 mA bunch current

± 2 μm60 dB range, centered beam

well within specifications

Prototype Readout Electronics

prototype MTCA-based system installed at PETRA III : 12 (8) BPMs, operated in parallel with existing Libera Brilliance system

- data taking recently started with all data paths
 - \circ ADC data
 - TbT / dec. TbT data (130.1 kHz / 2.0 kHz)

DESY. | Pohang Accelerator Laboratory Seminar | 3.4.2023 – Gero Kube

FA data (10 kHz)
SA data (10 Hz)

cross correlation

0

lag

DESY. | Technical Advisory Committee Meeting #5 March 2023 | PETRA IV WP 2.05 – Gero Kube

5

×10⁵

Fast Orbit Feedback (FOFB) System

FOFB: Parameters & Stability Requirements & Concept

	courtesy: S. Pfeiffer (DESY
Parameter	Value
Number of BPMs (x/y)	789
Number of fast correctors	522 (200H, 322V)
Synchrotron oscillation	600 Hz
Beam size at ID, standard cell	6.6 μm, 2.97 μm
Beam divergence at ID, standard cell	3.02 µrad, 1.34 µrad
at ID, standard cell	2.2 m, 2.2 m
Natural emittance	20 pm rad, 4 pm rad

Regulation concept

1 central control unit (GLO)

- The center as a node is not physically given by the infrastructure
 - ightarrow Shifted close to RF system / timing system
 - \rightarrow Short path from GLO to LOC in experimental halls

15 distributed local sections (LOC) acting as

- BPM collectors
- Transmitter to power supplies

Optical fiber communication links through the tunnel

- Global to all local systems → classical regulation scheme
- Local to local system → for local control scheme integrating experiments and potential redundancy upgrade

Requirements and status of PETRA IV Fast Orbit Feedback System, IBIC2022

Beam stability requirements:

Typically 10% of beam size (~300nm) and divergence (134nrad) at the IDs.

Remark: Some beamlines may require even 5%, 3%, ... in future?

Fast Orbit Feedback (FOFB) System

FOFB: Parameters & Stability Requirements & Concept

Subsystem/Links	Delay	Comments
Beam position calculation	23	3 turns maximum delay
BPM processor to BPM datahub	<0.5	Backplane link
BPM datahub to LOC	~1	Optical link ~ 10s of meters (10 Gbps)
LOC electronics nodes	<1	Local data processing
LOC to GLO (two ways including encoding/decoding)	12.5	Max of 1250 m (10 Gbps)
GLO controller	20	Global data processing time
LOC to PS	~ 0.5	Optical link ~ 10s of meters (10 Gbps)
Power supply	15	Max input-out delay (estimate)
Corrector magnet power cable	1.5	Max cable length 300m
Total	75	Anticipated budget delay

pre-accelerator BPM System for Petra IV

Delay line compensation for Cable and Electronic

pre-accelerator BPM System for Petra IV

Same BPM Type as in Flash and XFEL

RTM

12 slot mtca.4 create

110ns Delay line

Thank you for your attention!