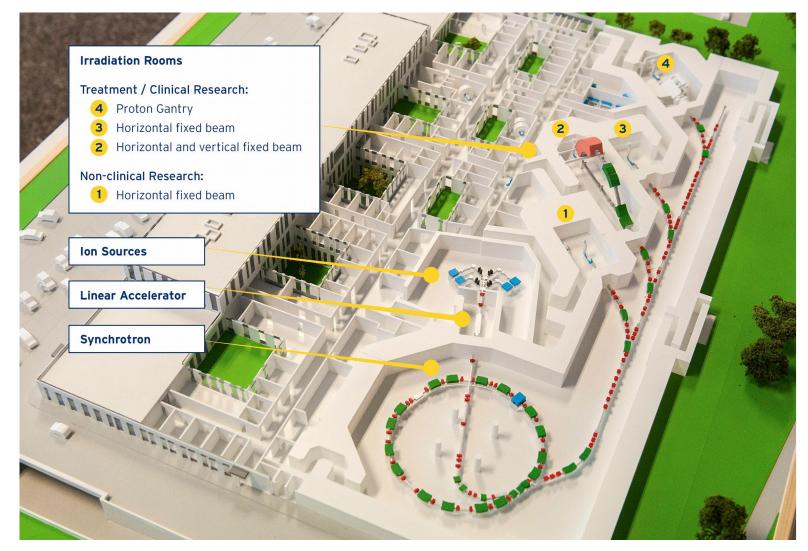
Development of a direct sampling μTCA LLRF system for the MedAustron Injector Regulation and Beam Instrumentation

M. Wolf, M. Repovz, M. Cerv, S. Myalski, C. Schmitzer – EBG MedAustron, Austria A. Bardorfer, P. Paglovec, B. Baričević, M. Škabar, M. Oblak, R. Černe, M. Zavrtanik, M. Cargnelutti – Instrumentation Technologies, Slovenia


> Libera Workshop May 2022

What is Medaustron

- Synchrotron based particle therapy center for cancer therapy
- Particles for treatment are protons and carbon ions
- Machine:
 - Injector (LINAC) at 216.816MHz (7MeV/u)
 - Synchrotron at 400kHz 10MHz
 - Proton (62 252MeV)
 - Carbon (120 400MeV)
- Installation started 2012
- Treatment started 2016
- 550 Patients planned for 2022

Reasons for the upgrade

- Components are EOL
 - Hardware not produced any more (Spare Parts!)
 - Software on Windows XP
- Limited support and internal knowledge
 - No official support by the supplier any more
 - Source code not available for internal support
- Different systems for the Injector and the Synchrotron
 - No synergies for developments done in the old systems
- Missing data access
 - e.g. regulation error, root cause for stopped operation not available
 - Limited pulse shaping options

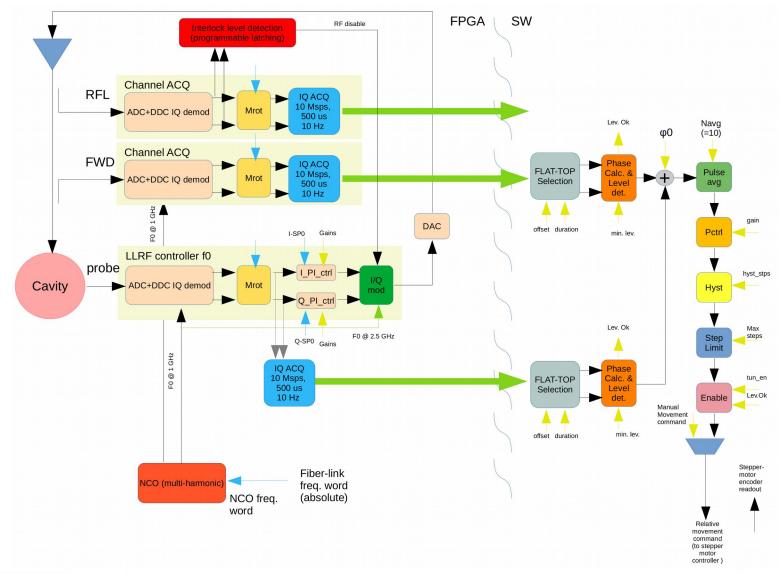
Project Setup

- Collaboration between Instrumentation Technologies and MedAustron
- Common project management tools and code repository
- Weekly progress meetings with both teams
- Regular integration testing at Instrumentation Technologies

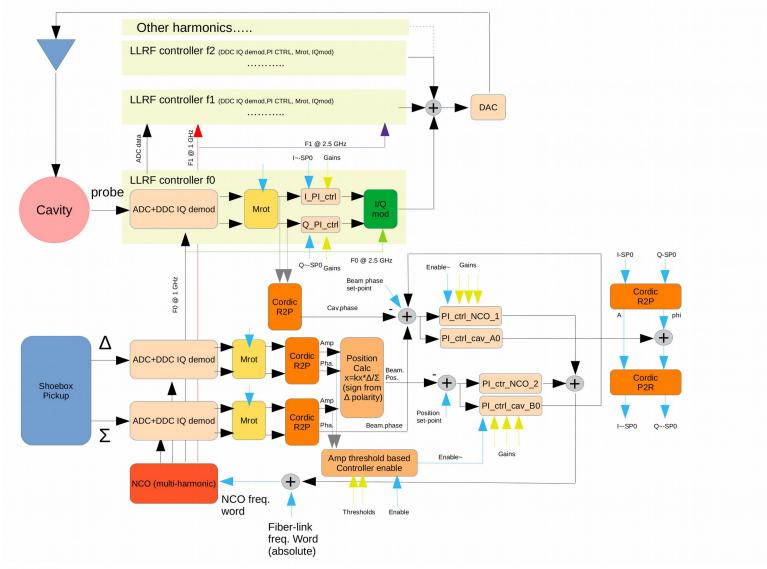
Requirements and Selected Hardware

Requirements

- CotS Hardware we do not have resources for hardware development
- Technical Requirements
 - Frequency range 400kHz 220MHz for Injector and Synchrotron compatibility
 - Stability (Amplitude 0.05% RMS, Phase 0.1° RMS)
 - Real Time "Pulse" Control
 - Cavity tuning (iLLRF)
 - Frequency ramping (sLLRF)
 - Multiple Harmonics (sLLRF)


Selected Components

- µTCA Hardware from Vadatech
 - 2U Chassis with 6-8 AMC slots (VT812/VT814)
 - Reference clock distribution
 - Chassis management, Ethernet distribution, ...
 - AMC 560 FPGA cards
 - 2x FMC slots
 - Xilinx Zynq Ultrascale+
 - Clock distribution
 - FMC 231 Analog Frontend Cards
 - 4x 16bit ADC @ 1GSps
 - 4x 16bit DAC @ 2.5GSps
 - FMC 105
 - 4x SFP+
 - FMC 155
 - 8x RS485
 - GPIO



Firmware Architecture

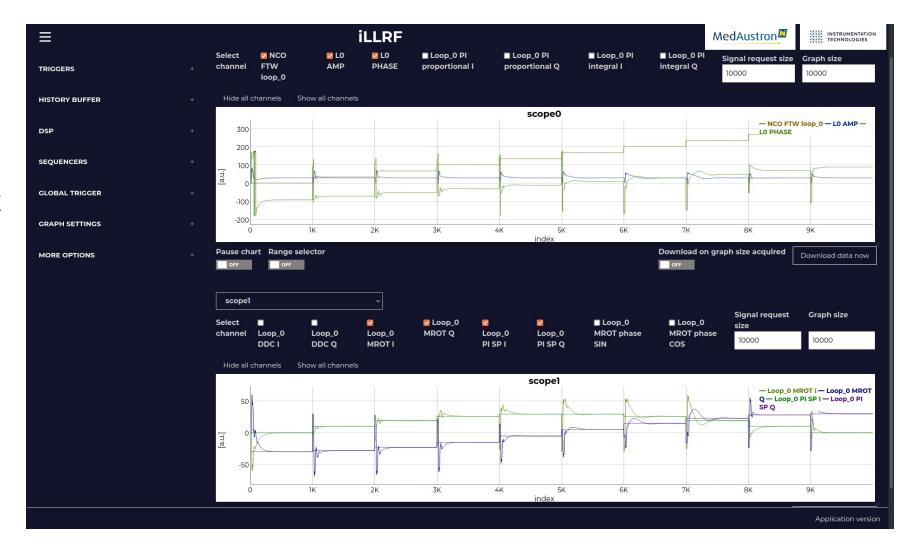
Firmware Architecture

Injector Beam Diagnostics - Energy Measurement

- 4 phase probes at different downstream positions
- Measure phase of probes and calculate time of flight for the particles
- Energy reproducible
 - Commissioning helium,
 IH cavity amplitude scan
- Energy fluctuations over the "Spill"
 - Old iLLRF introduces noise

Injector Beam Diagnostics - Energy Measurement

- 4 phase probes at different downstream positions
- Measure phase of probes and calculate time of flight for the particles
- Energy reproducible
 - Commissioning helium,
 IH cavity amplitude scan
- Energy fluctuations over the "Spill"
 - Old iLLRF introduces noise


RF Pulse Generation

- Test Setup without a cavity (Our Linac is in use and cavity tuning is not ready)
 - DAC output (max 0dBm) → 30dB Attenuation → 40dB low noise Amplifier → ADC input (max 10dBm)
- Frequency dependent phase correction (Matrix rotation) to compensate for static cable delays
- Frequency sweep from 2MHz to 302MHz in 33MHz steps
- Phase sweep from -90 to +90° in 20° steps
- Steps every 100µs, 1ms total pulse length
- Preliminary PI coefficient setup

RF Pulse Generation

- PI setup not ideal yet, might not be possible for this frequency range
- 0.3° Phase noise (peak to peak) at 202MHz (0.1° @2MHz)
- 0.1% Amplitude noise (peak to peak) at 202 and 2MHz

Conclusion

- Effective collaboration even with remote work
- Measurement results fulfill or exceed our requirements
- Linac Cavity Control and Beam Instrumentation are implemented and ready to use
- Synchrotron regulation (regulation on beam feedback) partially implemented
- Knockout extraction planned but not implemented yet

Thank you

Questions?

