•

INSTRUMENTATION TECHNOLOGIES

LIBERA

							•	•	•	•	•
								•	•	٠	•
								•	•	•	•
								•	٠	•	•
								٠	٠	•	•
								٠	٠	٠	•
								٠	٠	٠	•
									٠	٠	•
								•	•	•	•
								•	•	•	•

Borut Baričević

WWW.I-TECH.SI

Libera Workshop, May 2022

Outline

- Particle accelerator Master Oscillator introduction
- Libera building blocks overview
- Applications
- Recent developments

Introduction

Alternating gradient accelerators require:

- Synchronization of components with respect to a common phase reference (RF cavities, diagnostics...)
- Low jitter phase reference signal generation
- Stable distribution of the reference signal at spread locations. (low drift)
- Coherent generation of multiple frequencies from the same reference signal.
- Frequency tuning and continuous frequency sweep capabilities.
- Applications:
 - FELs
 - Synchrotron Light Sources
 - Particle therapy accelerators
 - Heavy particle linear accelerators

First generation Libera RMO (MO signal generation)

First generation Libera RMO features

Key features:

- Very low jitter: < 30 fs (10 Hz to 10 MHz)
- PLL locked OCXO based Reference Master Oscillator with frequency multiplication stages
- 4 RF outputs, up to +18 dBm
- Passive cooled design with temperature stabilized output RF splitter

Cumulative RMS jitter

Phase noise (Agilent E5052B SSA)

The Libera RMO Distribution Amplifier (MO distribution)

Key features:

- Active RF splitter to distribute the RMO signal to multiple users (up to 16 RF outputs)
- Low drift temperature stabilized design (based on Libera Sync and Libera LLRF TSRF)
- Low added jitter
- Possibility to generate output signals at multiple frequencies (harmonically related).

The MO generation and distribution building blocks

INSTRUMENTATION

TECHNOLOGIES

Construction RMO DISTRIBUTION AMPLIFIER

AVO proton therapy and other heavy particle applications

- Compact linear proton therapy accelerator based on 13 RF stations (LIGHT) (a 750 MHz RFQ and 3 GHz SCDTL and CCL structures)
- Libera RMO and Libera RMO DA are used to distribute the MO reference to each RF station, including the 750 MHz reference derived by the 3 GHz reference.
- Other heavy particle application would require MO frequency to be dynamically tuned to compensate the RFQ detune.

Libera RMO jitter performance 1/2

Libera RMO output (3 GHz) 18.03 fs

Libera RMO DA output (3 GHz) 17.78 fs

Libera RMO jitter performance 2/2

Libera RMO output (3 GHz) 18.03 fs

Libera RMO DA output (750 MHz) 26.6 fs

Applications: Synchrotron Light Sources

• LINAC, booster and synchrotron subsystem would need a common reference

TECHNOLOGIES

- Multiple frequencies need to be generated and distributed to remote users at distant locations
- There is the need to continuously tune the reference frequency to track the changes in the rings

New generation of Libera RMO

10 MHz

ref. input

- PLL locked based OCXO design upgraded with a DDS (Direct Digital Synthesizer)
- Improved frequency tuning range
- Frequency sweep capability and continuous phase transitions.
- Remote control over Ethernet with the possibility to be upgraded with an EPICS IOC.
- External triggering option to synchronize frequency adjustment time to avoid RF pulses.
- Different output stages and frequency ranges supported.

INSTRUMENTATION

TECHNOLOGIES

• Typical jitter: ~50 fs (10 Hz – 10 MHz)

New generation modular Libera RMO DA

- Modular temperature stabilized design to simplify the frequency customization
- Low jitter design
- Each module can generate a different frequency and provide 4 output channels
- Supporting up to 24 output channels

1

Libera RMO DA

Thank you! Questions?

www.i-tech.si

borut.baricevic@i-tech.si

Libera Sync

