

(1/2) New diagnostics developments at the ESRF based on Spark platforms: High Quality Phase-Monitor

Libera Workshop – May, 12th 2022

ESRF, on behalf of the DIAG group, E. Buratin

Outline

- 1) What is the **phase** and why it is important?
- 2) Past phase-monitor at ESRF
- 3) The new High Quality phase-monitor with a SPARK
- 4) Measurements
- 5) Conclusions

1) What is the phase and why it is important?

In a synchrotron electrons travel electromagnetic waves, generated by RF accelerating structures

Why we need the RF cavities? **To accelerate and to overcome the electron energy loss** per turn (due to Synchrotron Radiation emission)

To be properly accelerated, the **electrons** must be **in the right place at the right time**

So these electrons **must be in phase** with the RF field at each acceleration stage:

- Linac: 2 structures (100 MeV each)
 - Booster: 4 cavities
 - EBS: 13 cavities (6 MV in total)

2) The Phase-Monitors at ESRF

- Since 2013 a Libera Brilliance had been used as Phase-Monitor at ESRF
- 4 RF inputs from Booster-beam, SR-beam and the RF-Master-Source
- I and Q data-buffers read from each channel (triggered, TbT-decimated)
- Angle calculation and then Phase calculation (done by MATLAB)
- Resolution of a few milli-degrees!

What is new?

- Since 2022 a Libera Spark has been used as Phase-Monitor for the first time since EBS
- Same principle → I & Q data → angles → Phase
- It is now also generating a SA stream at 20Hz

3) The new Phase-Monitor

3) The new Phase-Monitor

The wobbly PLL affects all 4 channels in a strictly identical way

Consequence: the BPM is not a good phase meter (between SR-clock and RF-inputs)

But an excellent phase-meter, between the 4 RF input signals

With the above we can measure very precisely :

- C D = resolution of this phase monitor A - (C&D) = phase of SY w.r.t. Master-Source
- B (C&D) = phase of SR w.r.t. Master-Source
- A B = phase of SY w.r.t. SR

4.1) Strong phase fluctuations seen recently in the beam

Freq. spectral data from the BPMs shows strong amplitudes at specific frequencies (100, 600Hz) in HOR. plane at dispersive location in the ring

4.1) at decay and at injection

Data from the phase-monitor:

- Strong amplitudes at 100, 600Hz etc.
- At injection the synchrotron frequency shows-up (800 Hz)

4.2) At injection

- time -recording, fast buffer
- sample rate= T-b-T (355 KHz, 2.816 μs)
- the synchrotron frequency is visible

4.2) At injection

- time -recording, fast buffer
- sample rate= T-b-T (355 KHz, 2.816 μs)
- the synchrotron frequency is visible

4.2) At injection

- FFT of the time-recording → spectrum
- sample rate= T-b-T (355 KHz, 2.816 μs)
- the synchrotron frequency is dominant

4.3) In the Booster

• Slow Buffer, 4 consecutive injection cycles shown

6) Conclusions

A High Quality numeric **Phase Monitor** is now available with the use of a **Spark** with an updated firmware.

This **time-resolved phase** is available now both **in SA streams (20Hz)** and in **triggered buffers** and gives very good results.

The **frequency-domain** spectra give info on RF instabilities and synchrotron frequency.

We can follow the **EBS phase at decay and at injection**, the evolution of the **Booster phase** to match the EBS ring. Useful during MDTs to optimize the complex.

Questions?

Libera Workshop – May, 12th 2022

(2/2) New diagnostics developments at the ESRF based on Spark platforms:

low-cost detector-system for single-electron measurements

Libera Workshop – May, 12th 2022

Outline

- 1) A few figures about current and electrons
- 2) Single-electron injection
- 3) The visible-light set-up and lab
- 4) Single-electron measurements
- 5) Conclusions

1) A few figures about current and electrons

Current = charge / time

- Time SR = 2.8 μs
- Time SY = $1 \mu s$

Smallest current = 1 electron = $5.7 \cdot 10^{-14} \text{ A}$

Dark current shot (Linac gun off) = 10 to 100 electrons = $5.7 \cdot 10^{-13}$ to $5.7 \cdot 10^{-12}$ A

Injection shot (Linac gun on) = $6.3 \cdot 10^9$ electrons = 1 mA

Standard beam = 3.5 ·10¹² electrons = 200 mA

max

min

2) Single-electron injection Linac injection system

With Linac gun off, the dark current is only produced in the Linac accelerating structures [2 x 100 MeV]

3) The visible-light lab

The ASD-visible light optics lab:

- Light has been fully characterized
- Streak Camera measurements been done

3) The visible-light set-up

3) The PMT and BLM electronics

- A cheap **Photomultiplier Tube (PMT)** from Hamamatsu (what we use for our Beam Loss Detectors)
- Connected to the Beam Loss Monitor (BLM) from I-Tech

- Controlled by **TANGO application**
- Measurements performed in integration mode (1MΩ impedance & high gain)

TerminationA	1 MOhm	1 MOhm	-	
BldVgcOutputA	0.700	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		

4) Single-electron measurements

- 1-2-3-4-5 electrons in about one hour
- Sampling time = 8 seconds

4) Single-electron measurements

- signal-to-noise ratio is just > 6, for 8-second integration time
- a higher performance PMT can have less noise → we would reduce the measurement time

6) Conclusions

It is fun to **explore the extremes like one single electron** in both control and measurement with a simple **low-cost PMT** and the **visible-light system**.

The **dark-current** is in general our enemy, it is **usually suppressed by SY-cleaning system**, and it is **ultra-weak** (~100 electrons), can **never be measured with ordinary devices**, but it can disturb **users** that **impose high bunch-purity**.

With this simple device, we can **optimize the cleaning process** and **minimize the electron pollutions**, but only **during MDT** for the moment.

The ultimate goal is to be able to measure during USM the purity, up to 10¹¹ dynamic range with the visible-light system, to install a better PMT and then a Time-Correlated-Photon-Counter (TCPC). Such a dynamic range has so far remained impossible for our ASD-Diag. purity measurements.

Many thanks to the Accelerator Control Unit, Beam Diagnostics, Beam Dynamics and Beam Operation groups for technical support.

Many Thanks for your Attention!

Questions?