Beam Loss Study and Energy Calibration in Taiwan Photon Source

Chih-Hsien Huang

Control and Diagnostic Team of NSRRC

Libera Workshop – May 12th, 2022

Outline

- > The layout of Taiwan Photon Source (TPS)
- > Beam loss monitors installed at the TPS
- > Radiation pattern
 - > Beam loss trend at various IUT gap
 - **>** Radiation dose rate vs. Vacuum pressure
 - > Beam loss pattern in time domain
- > Beam energy measurement
 - Polarization time
 - Beam energy variation with/without feedback
 - Compacting factor
- > Summary

The layout of Taiwan Photon Source

The beam size at 7 m straight center is $120 \times 5 \ \mu m^2$ (1% coupling).

Beam loss monitors installed at the TPS

Radiation pattern

Beam loss trend in various gap of IUT

Radiation dose rate vs. Vacuum pressure

Beam loss vs bunch current

The resolution of beam loss monitor in the time domain is 8 nsec.

TPS BR/SR filling pattern monitor - Libera Digit500 Option

When an unpolarised electron beam is injected into a storage ring with vertical guiding fields, the emission of synchrotron radiation can flip the electron spin with asymmetric transition rates and making the electron spin anti-parallel to the guiding field. The polarization (P) process can be described by

$$P(t) = P_0 \left(1 - e^{-\frac{t}{\tau}} \right) \,.$$

For an ideal flat storage ring without field errors, a maximum degree of 92.38% polarization (P_0) can be reached and the polarization time (τ) with identical dipoles is

$$\tau [s] = 98.66 \frac{\rho^2 [m] R [m]}{E^5 [\text{GeV}]},$$

For TPS, the operating energy (E) is 3 GeV, is 8.40 m, *R* is 82.5 m and the polarization time is around 40 minutes.

$$R_{\rm norm} = \frac{1}{I^2} \frac{dN}{dt} \propto a + b \times P^2.$$

10

Beam energy

To calibrate the absolute beam energy of the TPS from depolarization, a sinewave is generated by a function generator and amplified before being sent to a vertical strip-line kicker. The normalized beam loss shows 10% steps while crossing the depolarization frequency (f_{dep}). The beam energy *E* is then

$$E[\text{MeV}] = m_e c^2 v_s / \alpha = 440.648626([v_s] + f_{\text{dep}}/f_0),$$

Beam energy variation during routine operation

The beam energy stability measured by resonant spin depolarization is less than 20 keV ($\Delta E/E \sim 7*10^{-5}$) during continuous operation.

The energy variation between beam trip or complete ring fills is in the order of 200 keV or more . This energy variation may come from orbit variations.

The energy variation without feedback is much higher than with feedback and RF adjustment.

Compaction factor

14

Summary

- To study beam loss mechanisms, radiation-sensing field-effect transistors (RadFETs), dual PIN diode beam loss monitors (BLMs), and scintillation detectors (Libera BLMs) are installed at the Taiwan Photon Source.
- High synchrotron radiation areas are located prior to the second bending magnet and straight section because of nearby photon absorbers.
- To shield BLMs from synchrotron radiation, 1 mm-thick lead shields are used in this area for both enhancing the sensitivity of the beam loss and reducing the radiation damage to the BLMs.
- The beam loss pattern can be easily observed and is quite different when the insertion devices are closed independent of injection or decay period during routine operation.
- Spin-polarization time and beam energy can be determined by using scintillation detectors which are installed after the first bending magnet.
- The energy stability of the TPS is within 20 keV due to the precise control of the beam orbit by the fast orbit feedback system and radio frequency adjustment.
- The beam loss pattern in the time domain can also be detected by Libera BLMs.

Thanks for your kind attention.

