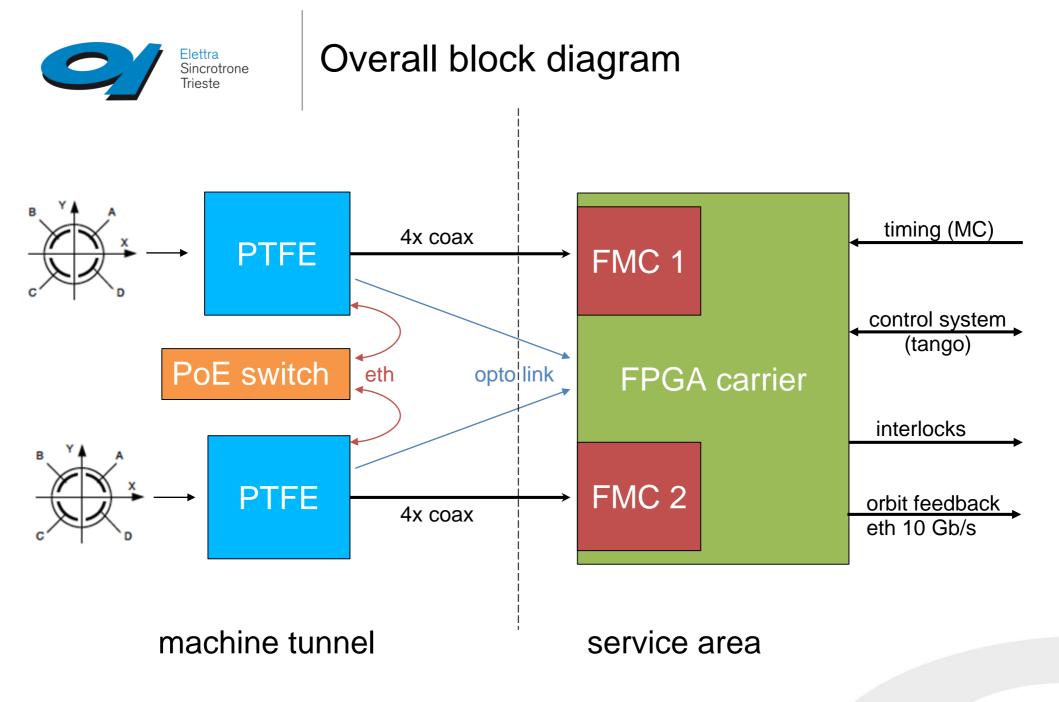


Overview of Pilot Tone Front End industrialization for Elettra 2.0

G. Brajnik, Elettra - Sincrotrone Trieste

Overview of Pilot Tone Front End industrialization for Elettra 2.0, Libera Workshop 2022

G. Brajnik, 12/05/2022

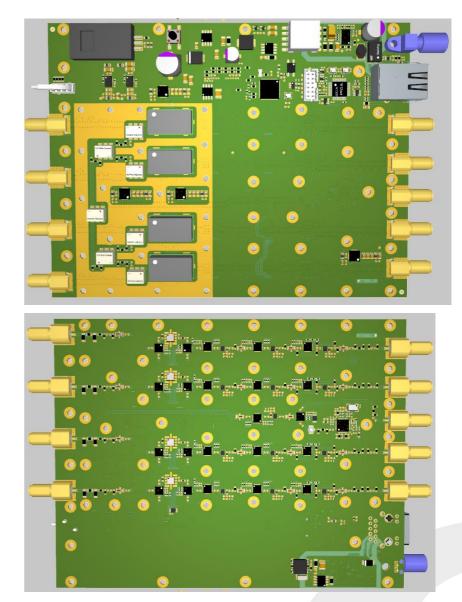

1

Whole project overview

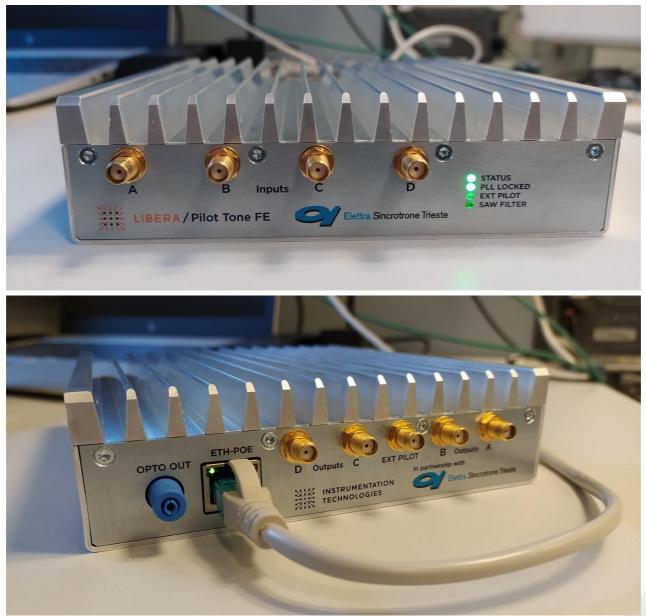
- Partnership with Instrumentation Technologies for the production of 200 units of BPMs planned for Elettra 2.0, based on pilot tone compensation
- Specifications:
 - Sub-micron resolution @ 10 kHz
 - Long-term stability better than 2 µm in 24 hours
 - Compensation of thermal drifts, channel variations, cables response
- Modular approach:
 - analog front end in the machine tunnel
 - digitizer in service area

Overview of Pilot Tone Front End industrialization for Elettra 2.0, Libera Workshop 2022




- Although we are working on the whole system, this presentation will focus only on the front end (it is a mature product)
- Constructive dialogue with I-Tech: continuous revisions thanks
 to their expertise in product engineering and industrialization
- Modifications proposed in last year presentation at LWS
 - Control module + RF module becomes single board
 - Miniaturization, less connections higher reliability
 - Passive cooling maintenance free
 - PoE no external components required + remote power cycle possibility
 - Remote FW upgrade

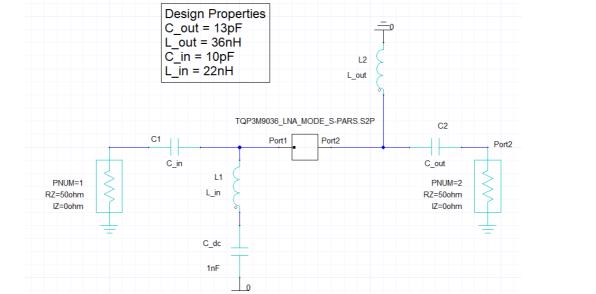
Pilot Tone Front End industrialization



Overview of Pilot Tone Front End industrialization for Elettra 2.0, Libera Workshop 2022

G. Brajnik, 12/05/2022

Pilot Tone Front End industrialization


Results obtained working together:

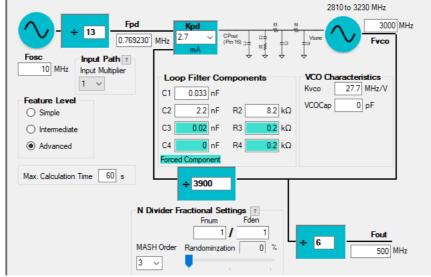
- 1. <u>Technical</u> improvements:
 - Improvement on input/output matching
 - Improvement on pilot tone phase noise
 - Better shielding better temperature stability
 - Improvement on compensation (pilot tracks changes better)
- 2. "Ease of use" improvements:
 - "rugged" and reliable instrument (use "on field")
 - Full documentation (user's manual)
 - Performance checked extensively with reports

- Reduce signal reflections and standing waves
- Trade-off between components number and values of matching circuit, performance and repeatability of the design

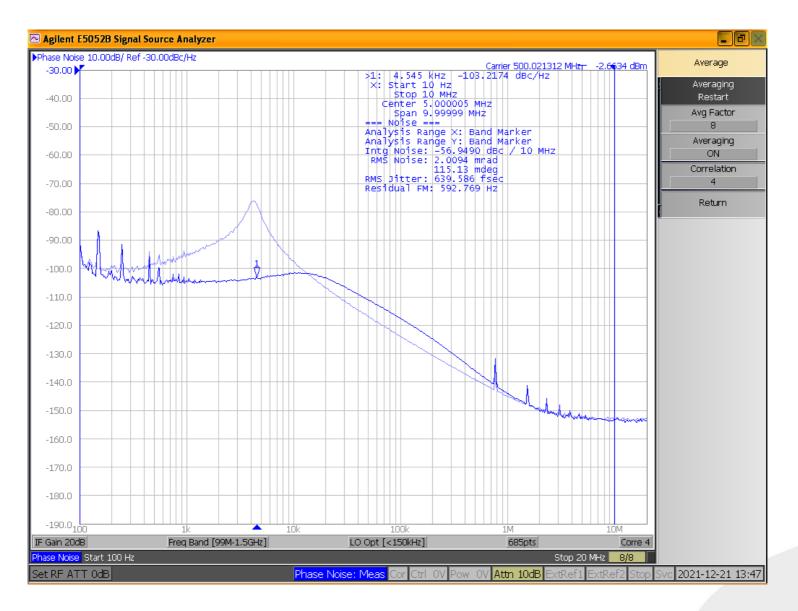
meas @ 500 MHz	Prototype	Ind. version
S11 (input return loss)	-14 dB	-31 dB
S22 (output return loss)	-16 dB	-26 dB

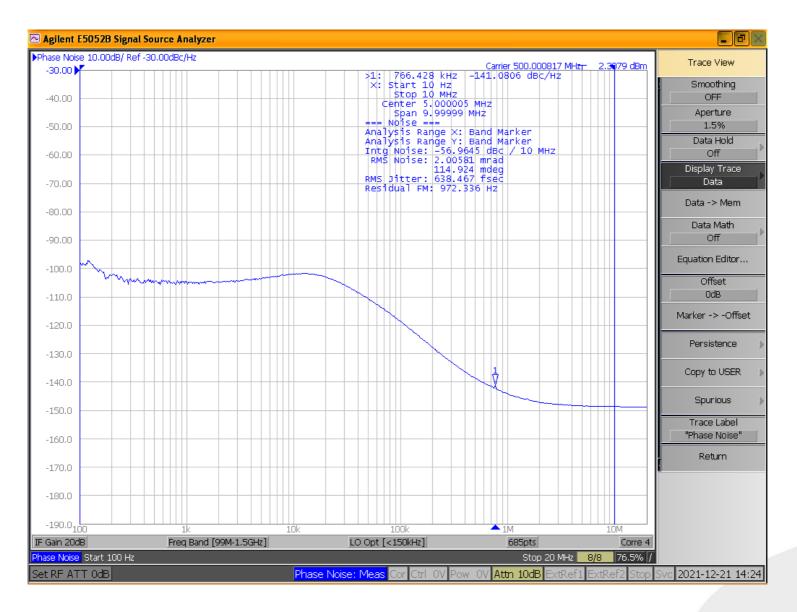
Amplifiers matching improvement -before

Amplifiers matching improvement - after



Pilot phase noise improvement

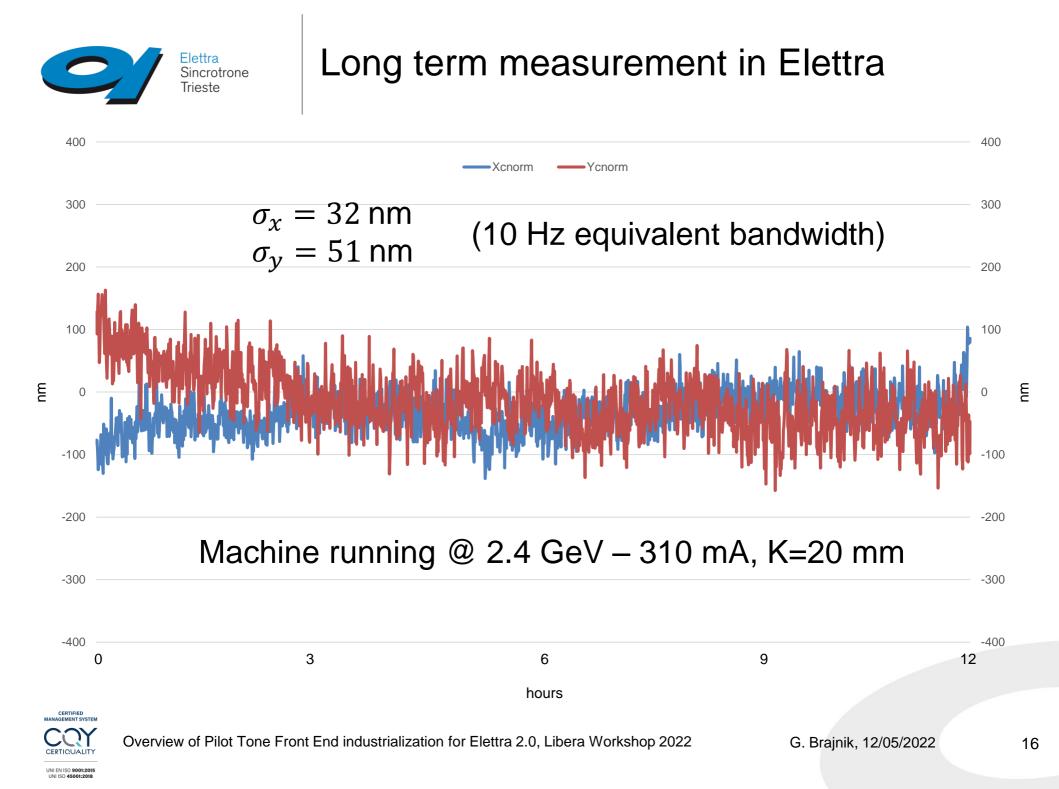

- The source of pilot tone can be internal or external (SMA)
 - In the former case is generated by a low phase noise PLL
- Frequency and amplitude are programmable
- Reference frequency from a 10 MHz crystal
- Filter of PLL need to be optimized for 500 MHz operation
- Jitter improvement: from 2.8 ps to 650 fs in a 100 Hz-10 MHz bandwidth


Pilot phase noise improvement - before

Pilot phase noise improvement - after

Benefits from shielding

- Large heatsink homogeneous heat dissipation
- RF chain fully shielded
- Pilot tone tracks better channel variations (due to temperature, gain changes, etc)


Benefits from shielding

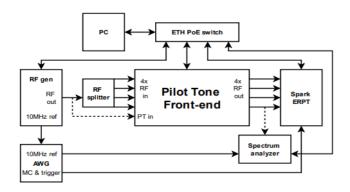
- Measurements of temperature dependence with a 22-metre coaxial cable (LMR-195)
- 3 times better with respect to the prototype (measurements in climatic chamber courtesy of A. Vigali, I-Tech)

compensated position

T variation (°C)	X/T proto (µm/K)	X_C/T proto (µm/K)	X/T ind (µm/K)	X_C/T ind (µm/K)
25°-15° step	-8.2	-3.7	-6.5	0.9
15°-35° ramp	-7.8	-3.65	-6.3	1.0
35°-25° step	-7.9	-3.6	-6.2	1.0

Project next steps

- First series of 10 BPMs will equip a cell in Elettra 1
- Second series of 200 BPMs
- Electronic components shortage remains critical...
- Assure same level of performance on all units challenge on repeatability
- FAT procedure on every unit (A. Vigali, P. Leban I-Tech)
 - Checks for basic functionality
 - Short term measurements (SNR, crosstalk)
 - Long term measurements (stability)


INSTRUMENTATION TECHNOLOGIES

Signal-to-Noise*

INSTRUMENTATION TECHNOLOGIES

FAT

Elettra PTFE Test Record

Radiation sensor

Uptime [min]

Acc. Dose []

Rate [cpm]

Measurement

17

259

Limit

> 5

>1

< 2

Figure 1: Test setup diagram

Unit serial number:	911038210004
MAC address:	00:26:32:00:0A:55
FW version:	1.0~r2018
Tested by:	Ales Vigali
Date:	25.mar.22

Initial checks					
Visual inspection	OK				
PoE & LED check	OK				
Voltages check	OK				
Temperature check	ОК				
Optic latch check	OK				
BP filter check	OK				
FRAM check	ОК				

Frequen	icy setting					
pll:n	Calculated Freq. [MHz]	Measured Freq. [MHz]	Delta [ppm]	Limit [ppm]	Power [dBm]	PLL locked
3890	498,7179	498,7206	5,2	40	-30,7	OK
3895	499,3590	499,3617	5,4	40	-30,7	OK
3900	500,0000	500,0027	5,3	40	-30,7	OK
3905	500,6410	500,6437	5,3	40	-30,8	OK
3910	501,2821	501,2848	5,4	40	-30,8	OK

Signal-to-noise
RF generator signal

pt_att

[dB]

0

5

10

15

20

25

30

att_1

[dB]

0

0

0

0

0

0

0

* calculated on 10k FA samples ** power on PT input is -14.7dBm

RF gene	rator sig	nal			
Power [dBm]	att_1 [dB]	att_2 [dB]	att_3 [dB]	max adc []	A
0	10	30	30	2418	84
-5	5	30	30	2483	8
-10	0	30	30	2554	84
-15	0	25	30	2545	8
-20	0	20	30	2552	8!
-25	0	15	30	2557	8
-30	0	10	30	2582	84
-35	0	5	30	2649	8:
-40	0	0	30	2821	7
-45	0	0	25	2948	7
-50	0	0	20	3214	61
-55	0	0	15	3667	6
-60	0	0	10	4559	51
* calculat	ted on 10	k FA sam	ples		

* calculated on 10k FA samples

att_3

[dB]

30

30

30

30

30

25

20

max

adc []

2980

2995

3027

3082

3270

3381

3638

Internal Pilot tone generator pt_att att_1 att_2 att_3 max [dB] [dB] [dB] [dB] adc []									
					A				
0	0	20	30	2980	8				
5	0	15	30	2995	8				
10	0	10	30	3027	84				
15	0	5	30	3082	8				
20	0	0	30	3270	79				
25	0	0	25	3381	7				
30	0	0	20	3638	7(
* calculat	ed on 10	k FA sam	ples						

att_2 [dB]

20

15

10

5

0

0

0

External Pilot tone generator** Crosstalk										
- calculat	led on 10	* calculat	ed on 10	k FA sam	ples					
	÷	k FA sam		3030	~	30	0	0	2	
30	0	0	20	3638	7(25	0	0	2	
25	0	0	25	3381	7!		0			
20	0	0	30	3270	7	20	0	0	3	
20			20	2270		15	0	5	3	

		Output channel [dB]					
		Ch A	Ch B	Ch C	Ch D		
_	Ch A	0,0	61,9	60,9	61,0		
ine of	Ch B	62,8	0,0	62,1	61,7		
Input channe	Ch C	61,9	61,0	0,0	61,1		
Ŭ	Ch D	61,4	63,2	62,9	0,0		
* all PTFE attenuators set to 0dB							

** limit set at 50dB

INSTRUMENTATION TECHNOLOGIES

Channel-to-Channel difference*

[%]

0,7

0,8

0,7

0,8

1.0

1,0

0,9

delta C delta D

[%]

0,9

0,7

0,4

0,2

0.3

0,2

0,0

Limit

[%]

5

5

5

5

5

5

5

RF gene	rator + In	ternal Pi	ot tone g	enerator		Signal-to-Noise*				
Power [dBm]	pt_att [dB]	att_1 [dB]	att_2 [dB]	att_3 [dB]	max adc []	A [dB]	B [dB]	C [dB]	D [dB]	Limit [dB]
-20	0	0	20	30	5461	84,0	84,1	83,9	84,0	80
-25	5	0	15	30	5464	83,8	84,0	83,9	83,8	80
-30	10	0	10	30	5504	82,3	82,5	82,3	82,4	80
-35	15	0	5	30	5585	79,8	79,9	79,6	79,8	80
-40	20	0	0	30	5834	75,9	76,2	75,8	76,2	70
-45	25	0	0	25	5946	71,5	71,6	71,2	71,6	70
-50	30	0	0	20	6173	66,6	66,7	66,3	66,8	65

delta A

[%]

0,2

0,2

0,2

0,2

0.4

0,5

0,6

delta B

[%]

1,5

1,3

0,9

0,7

0.4

0,3

0,2

nal I	Pilot tone	e generat	or			Internal	Pilot tone	e generat	or
att B]	att_1 [dB]	att_2 [dB]	att_3 [dB]	max adc []	A	pt_att [dB]	att_1 [dB]	att_2 [dB]	1
)	0	20	30	2980	8	0	0	20	
j	0	15	30	2995	8	5	0	15	⊢
0	0	10	30	3027	84	10	0	10	⊢
5	0	5	30	3082	8	15	0	5	⊢
0	0	0	30	3270	7		-	-	⊢
5	0	0	25	3381	7!	20	0	0	⊢
0	0	0	20	3638	7(25	0	0	⊢
culat	ed on 10	k FA sam				30	0	0	
ouldi		a i A admi	000			* calculat	ed on 10	k FA sam	ple

[dB]

30

30

30

30

30

25

20

adc []

2904

2920

2952 8

3013 8

3181 7

3330

3579 7(

8

7

	Overview of Pilot Tone Front End industrialization for Elettra 2.0, Libera Workshop 2022
CERTIQUALITY	

CERTIFIED MANAGEMENT SYSTEM

Thank you!

Overview of Pilot Tone Front End industrialization for Elettra 2.0, Libera Workshop 2022

19

www.elettra.eu