

Upgraded Libera Brilliance+ instruments for the 560 beam position monitors of the APS Upgrade storage ring

John Carwardine

APS Upgrade Argonne National Laboratory **June 10th**, **2021**

Libera Workshop 2021

Acknowledgements

This project is the result of valuable contributions from many people, including but but certainly not limited to:

- Argonne: Ron Blake, Adam Brill, Hanh Bui, Weixing Cheng, Nick Manos, Tony Pietryla, Nick Sereno, Patricia Weghorn
- I-Tech: Uros Dragonja, Peter Leben, Peter Paglovich, Marco Praznik

Outline

- The APS Upgrade project
- Bpm electronics specifications
- Bpm electronics project timeline
- Some lessons learnt
- Acceptance test results

APS-U rf bpm electronics performance requirements

• Spec on long-term beam position drift: 1 um rms over 1 week

Estimated peak voltages and turn-by-turn resolution requirements

Num. bunches (rep. rate)	Stored beam current	Charge /bunch	Gaussian bunch length	V _{peak} at BPM electronics	Required TBT resolution
48 (13 MHz)	25~200 mA	1.92~15.3 nC	22.0~100.5 ps	9.52~17.7 V	<1.3 µm
48 (13 MHz)	25~200 mA	1.92~15.3 nC	20.0~38.0 ps	10.11~49.9 V	N/A
324 (88 MHz)	25~200 mA	0.28~2.3 nC	16.9~83.6 ps	1.69~3.3 V	<1.3 µm
Singlet (271 kHz)	1 mA	3.7 nC	100.5 ps*	4.2 V	<16.5 µm
Single-pass injection (1 Hz)	Multi-turn, non-stored	1 nC	~100 ps	1.2 V	<58 µm

* Expected actual bunch length is ~30 ps

APS-U Project Scope

APS-U Lattice

- Storage ring consists of 40 Sectors. Each with 33 arc magnets; 27.6 meters / sector
- Each sector is a hybrid 7BA with four longitudinal-gradient dipole bends, three transverse-gradient dipoles, and six reverse bends.
- Diagnostics include 14 rf bpms per sector (560 bpms total) and two GRID xray bpms at each of 35 insertion device front-ends.

APS-U Libera Brilliance+ requirements

(Reference point: 2016 Libera Brilliance+)

Hardware specific

- FPGA should be latest-generation (Xilinx Ultrascale+)
- Three separate turn-by-turn output data streams (fast orbit feedback, beam position interlock, and turn-by-turn DAQ)
- No obsolete or near-end-of-life components

Functionality

- Pin-cushion linearization block for all turn-by-turn data streams
- Single-bunch single-pass capability for measuring first turn(s) during commissioning
- ADC gating feature with four separate ADC masks primarily of interest for physics studies *
- Improved cross-bar switch glitch-removal algorithm
- Synthetic data generator to support validation of beam position interlocks without beam
- Tagging of synthesized data samples

Computing environment

- Use standard currently supported Linux OS and EPICS release
- Remote firmware updates
- Booting IOC over the network

* Cheng et al , MethodsX, Volume 5, 2018, pp 626-634

APS-U Libera Brilliance+ Project timeline

- Contract kick-off meeting: January 20, 2020
- First articles (remote) factory acceptance tests: April 20, 2020
- First-articles shipped: May 22, 2020
- ANL acceptance of first articles: July 20, 2020
- 140 production units in five shipments
 - First production batch shipped: Oct 2, 2020
 - Fifth production batch shipped: April 7, 2021 (exactly on schedule)
- Site acceptance completed: May 7, 2021

Last units received and accepted

Acceptance testing at ANL

First production units at ANL

New bpm module

Production RF modules at I-Tech

Acceptance test criteria

Tests repeated under two test conditions

- 1. Phase-matched cables, no attenuators (simulates centered-beam)
- 2. Phase-matched cables + attenuators to lower Button A by 3dB (simulates off-center beam)

Test	Test signal	Specification	
Resolution	0 > -32 dBm	1.3 um rms	
	-36 > -40 dBm	2.6 um rms	
	-44 dBm	5.2 um rms	
Beam current dependence	0 > -32 dBm -36 > -60 dBm	1 um rms deviation 2 um rms deviation	
Fill-pattern dependence	-23 dBm @ 100% fill	<1 um rms difference in offsets	
	-23 dBm @ 90% fill		
Intermediate-term drift (4 hrs)	-23 dBm Delta-T: +/-2 deg-C	<100 nm peak-to-peak drift	

Test	Test signal	Specification
Channel-channel isolation	20V, 1 ns pulse with other inputs terminated	>50 dB
Uncompensated gain variation	-41 dBm, attenuators at 0 dB	<5% within bpm module < 3% module to module

BPM module hardware

"No obsolete or near-end-of-life components"

- Original crossbar rf switch device designed by Hittite is now obsolete (HMC427LP3)
- New bpm module used the drop-in replacement from Analog Devices (HMC427ALP3), but resulted in poor temperature dependence of the modules

Cause:

A key (undocumented) performance parameter was degraded during a redesign of the device for a different manufacturing process (temperature stability of the s-parameters).

Resolution for APS-U:

To use the original (obsolete) devices, with I-Tech retaining sufficient stock to address any long-term support needs.

Long-term drift – challenges

Specification: <100nm drift over 4 hours and +/-2 deg-C

Initial setup for FAT

- Temperature chamber #1: Libera Brilliance+
- Temperature chamber #2: RF & clock generators

A lot of effort was spent trying to narrow down the cause of the drift

- Temperature gradients on the board
- Cable issues with temperature or humidity
- RF signal drift
- RF splitters configurations and stability
- LB+ Digital Signal Conditioning function
- Parallel investigations at ANL

Long-term drift – final test configuration

- LMR cables were replaced with semi-rigid cables (better temperature stability)
- Test setup was fixed on a plate and was used for all units tested in the extended FAT
- Under same testing conditions, all results were within specification

Measured drift in final test configuration

Site acceptance tests

- Bench acceptance tests on 100% of the units
- In-ring long-term stability test on 25 units (limited by APS Operations)
- Step-by-step inspection and acceptance of each unit was captured in an electronic traveler system in the APS-U Components Database
- Automated testing using python and Tcl/Tk to perform LB+ configuration, instrument setup, data collection and analysis and archive data in the APS-U Components Database (CDB).
- Tests were performed over range of power levels and for centered and off-center beam: channel gain uniformity, turn-by-turn resolution, beam current dependence, and fill pattern dependence
- Intermediate-term drift tests were run overnight on four units simultaneously (16 bpm modules)
- Channel isolation test performed by applying pulsed input to each channel individually
- 556 of the 560 production modules passed site acceptance tests
 - Two units failed intermediate drift specs
 - Two units failed channel isolation spec (likely damaged in shipping)

Libera Workshop 2021 – Upgraded Libera Brilliance+ instruments for APS Upgrade (Carwardine)

		Site Acceptar	nce Testing Libera	B+ too	ol	_ ¤ ×
File						
LB+ SAT 1. Enter 2. Selec 3. Perfo 4. Perfo 5. Perfo 6. Insta 7. Use p 8. After	tool for 4 module working director t test options rm initial setup rm PLL test rm Centered beam 11 attenuators on ulsed source to p all tests pass.	s simultaneousl y, unit name, a for unit multi-scan channel A of a erform channel set up for drif	y nd QR code 11 modules and pe isolation for eac t.	erform (h modul	off-center mult Le individually	i-scan
Work	ng directory /home/o	kygen/DIAG/Libera	/BrilliancePlus/Testin	g/liberab	p001	
	Unit ID liberabp	001			Show help	
	QR code: 0000123	45				
APS		Signal gen. addr: 10.54.48.19		Signal corr. 16.7		
C APSU		MO addr: 10.54.48.20		Test Modulation		
	Initial Setup	1				
PLL lock		N N				
Centered Off center	Multi-scan	Individual Scans:				
		Channel gains	Fill pattern Depen	dence	TBT Resolution	Current Dependence
	Channel Isolation	BPM module	• 1	0.3		
			○ 2	0.4		
	Set up for Drift					

Setup for bench tests

Setup for in-ring test

13

Ensemble statistics: uniformity of channel gain

rms ADC counts by channel at

-41 dBm input (by bpm module number)

rms ADC counts by channel at -41 dBm input (as histogram)

Channel A Channel B Number of modules 900 60 60 ts) ts) 50 50 coun 8000 +/-800 40 40 (ADC (ADC 30 30 20 20 DCADC N ax ADC 7500 10 10 ž 100 200 300 400 500 600 100 200 300 400 500 600 BPM В BPM А Channel C Channel D Number of modules 60 60 ts) ts) 50 50 count coun 8000 +/-800 8500 40 40 (ADC (ADC 30 30 20 20 MaxADC DCADC 10 10 100 200 300 400 500 600 100 200 300 400 500 600 ADC count ADC^Dcount BPM BPM Equivalently, represents performance ← 8000 +/-800 → 8000 +/-800 -> from start to end of the production run

Ensemble statistics: beam current dependence (-60 dBm)

Histogram of change in position over input range of 0 dBm to -60 dBm

Centered beam condition: < 0.5 um rms over 560 modules

Off-center beam condition: < 1.5 um rms over 560 modules

Some percentage of the modules did not meet the off-center spec of +/-2 um at -60dBm

We accepted modules with offsets less than 2.5 microns.

Representative long-term drift in APS storage ring

(Spec is 400nm peak-peak over 7 days)

Libera Workshop 2021 – Upgraded Libera Brilliance+ instruments for APS Upgrade (Carwardine)

Summary

- In January 2020, Argonne contracted with I-Tech for 560 newly-developed Libera Brilliance+ rf bpm modules for the APS Upgrade accelerator.
- Despite the global pandemic, I-Tech kept to their promised schedule. Within 16 months, they completed the development of the new Brilliance+ and delivered 560 production bpm modules in 140 production units to Argonne.
- Site-acceptance pass rate was high at 99.2% (4 failures out of 560).
- Stringent APS-U functional and performance requirements have been met.

