PETRAIV.

Development towards a new BPM system for the PETRA IV project at DESY

Online Libera Workshop June 2021

Gero Kube Hamburg, 10.6.2021

- □ Introduction
- PETRA IV Project at DESY
- BPM System for PETRA IV
- Laboratory Investigations at I-Tech
- □ Long Term Stability Measurements at PETRA III

DESY Accelerator Complex (Hamburg, Germany)

User Facilities

PETRA III @ DESY

History

PETRA IV. NEW DIMENSIONS

TDR: DESY 2004-035

- <u>1978 1986</u>: e⁺e⁻ collider (up to 23.3 GeV / beam)
- <u>1988 2007</u>: pre-accelerator for HERA (p @ 40 GeV, e @ 12 GeV)
- since 2007: dedicated 3rd generation light source, commissioned in 2009
 - \rightarrow 14 beamlines (15 experimental stations) operating in parallel
- from 2014: staged extension project

- W. Drube et al., 2016 https://doi.org/10.1063/1.4952814
- \rightarrow up to 12 additional beamlines (presently not all of them in operation)

Parameter			
Energy	(5	GeV
Circumference	23	04	m
Emittance (hor. / vert.)	1.2 /	0.012	nm rad
Total current	10	00	mA
Number of bunches	960	40	
Bunch population	0.5	12	10 ¹⁰ e
Bunch separation	8	192	ns

PETRA IV @ DESY

Diffraction Limited Storage Ring → Multi Bend Achromat Lattice

Lattice Overview

- most likely: H6BA (proposal P. Raimondi, ESRF)
 - \rightarrow large dispersion, weak sextupoles
- natural emittance ~50 pm.rad
 - \rightarrow recovered by damping wigglers

Design parameter	PETRA	A HI	PETR	AIV
Energy / GeV	6		6	
Circumference / m	2304	p.	230	4
Operation mode	Continuous	Timing	Brightness	Timing
Emittance (horz. / vert.) / pm rad	1300/	10	< 20 / 4	< 50 / 10

PETRA IV @ DESY

Timeline

C.G. Schroer et al., PETRA IV: Upgrade of PETRA III to the Ultimate 3D X-ray Microscope. Conceptual Design Report

Beam Position Monitor (BPM) System for PETRA IV

Requirements

Performance

•	resolution on single bunch / turn	(0.5 mA / bunch)	< 10 µm
•	resolution on closed orbit	(200 mA in 1600 bunches @ 1 kHz BW	< 100 nm (rms
•	beam current dependence	(60 dB range, centered beam)	± 2 μm
•	long term stability	(measured over 6 days, temperature span ±1°C within a stabilized rack)	< 1 µm

First Turn Steering Tolerances

(Mechanics & Electronics)

< 500 µm

• manufacturing (pickup, feedthroughs, ...)

(Electronics)

- alignment
- electrical offset

no time and manpower commercial solution will not fulfil requirements — Brilliance would fulfil requirements $= 10 \text{mm}) / \mu \text{m}$ Brilliance+ DDC Brilliance+ TDP **BPM** resolution (K 2.5 0 0.5 bunch current / mA

BPM System for PETRA IV

Boundary Conditions

- Number of BPMs: about 700
- 9 BPMs per cell / 64 cells \rightarrow 576 BPMs in arcs •
- 8 BPMs in short, 12 BPMs in long straight sections ٠

In-house Development:

Libera Brilliance:

Libera Brilliance+:

- in use at MAX-IV •
- planned for APS-U ۲

- (incl. spares: ~700) 656 BPMs
- cost / space are important factors

 $\leq 10 \, \text{k} \in \text{(per channel)}$

G. Kube et al., Proc. IBIC2019, Malmö, Sweden, WEPP005

BPM System for PETRA IV

Long Term Stabilization

Drawback Libera Brilliance+

long term stabilization starts at RF front-end •

Critical Aspect for PETRA IV

- large machine circumference •
- limited space in old tunnel segments •
- large number of BPMs •
 - additional access points required to bring \rightarrow BPM cables out of tunnel
 - climate conditions at access points yet undefined

influence of cable paths !

•

BPM System for PETRA IV

DESY Strategy

Stabilization

- well proven technology
- stabilization of cable paths

DESY Lab Strategy: MTCA.4 as technical platform

Development Project with I-Tech

- prototype development of MTCA.4 based BPM system
- crossbar switching with separated switching matrix

first Proof-of-Principle Measurements

- lab measurements at I-Tech
- measurements with beam at PETRA III

separate analogue switching part from LB+

and bring it as close as possible to BPM

courtesy: Luka Bogataj (I-Tech)

Remote Switching: Test at I-Tech

INSTRUMENTATION TECHNOLOGIES

Concept

Preliminary Results

Remote Switching: Test at I-Tech

UTP cable (100m)

Temperature Chamber Experiment

to further evaluate remote switching concept, temperature chamber was used to control environment:

INSTRUMENTATION TECHNOLOGIES

courtesy: Luka Bogataj (I-Tech)

Remote Switching: Test at I-Tech

Temperature Chamber Experiment

Results:

X, Y and Q temperature coefficient (nm/K):

	X	Y	Q
Temperature coefficient (nm/K)	64	-81	71

temperature coefficient of remote switching concept is comparable to onboard switching with no external cables!

INSTRUMENTATION TECHNOLOGIES

temperature coefficient of external switch matrix dominates total temperature coefficient.

no need for length matched coaxial cables!

courtesy: Luka Bogataj (I-Tech)

Test Setup

PETRAIV. NEW DIMENSIONS

Beam Tests: April / May 2021

- combiner / splitter
 - → MACOM DS-409-4
- 20 dB attenuator
 - \rightarrow Radiall 20dB
- 500 MHz bandpass filter
 - \rightarrow Wainwright Instruments WBK500-15-5SS

Test Setup

Libera Brilliance+

Long Term Measurement #1

Beam Condition

- user run: 40 bunches @ 100mA
- 2x beam losses, in between several partial beam losses

Procedure

- take about 50,000 SA samples
- start of measurements: switch AGC on for 15s
 - \rightarrow afterwards switch AGC off \rightarrow -35 dB gain
- DSC & Switching: on

Long Term Measurement #1

Orbit RMS Value

- exclude time of beam loss and refill
 - \rightarrow consider only data for I_{dc} > 25mA

PETRA IV. NEW DIMENSIONS

Long Term Measurement #2

Beam Condition

- user run: 40 bunches @ 95mA
- 2x beam losses, 2x delay in top-up sequence

beam current

Procedure

- 20dB attenuator removed in signal chain
- take about 50,000 SA samples
- keep AGC on
- DSC & Switching: on

Long Term Measurement #2

Orbit RMS Value

- exclude time of beam loss and refill
 - \rightarrow consider only data for I_{dc} > 25mA

Long Term Measurement #2

DSC coefficients

correlation

with rack

temperature

no obvious correlation

with tunnel

temperature

temperature

Summary and Outlook

PETRA IV

- new diffraction limited storage ring project at DESY
- based on multi-bend achromatic lattice
- commissioning \rightarrow should start 01/2027

Proof-of-Principle Measurements

- lab tests at I-Tech
- long term measurements at PETRA III
- further investigations will follow (radiation hardness, ...)
- on the whole looks very promising
 - ightarrow will follow the concept

BPM System for PETRA IV

- about 700 BPMs required
- technical platform MTCA.4
- cable paths critical, require stabilization
 - \rightarrow concept of external crossbar switching

Acknowledgment

- I-Tech for hosting the workshop
- Diana Bertè for the workshop organization
- the audience for their attention

Contact

DESY. Deutsches	Gero Kube
Elektronen-Synchrotron	Machine Diagnostics and Instrumentation (MDI)
	gero.kube@desy.de
www.desy.de	+49 40 8998 3077