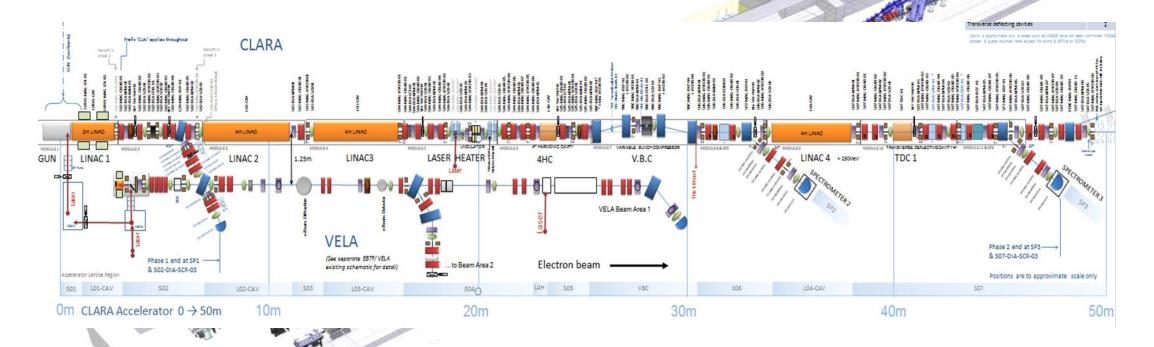


Daresbury Laboratory RF update

Andrew Moss June 2021


Contents

- Recent RF work on CLARA
 - Major waveguide issues 6 months of work
- Installation of linac modulators
- European Spallation Source RF work

CLARA (Compact Linear Accelerator for Research Applications)

Current Set-up

VELA Line contains the high repetition rate gun (Gun 400) CLARA Line contains the low repetition rate gun (Gun 10)

RF Gun operations on CLARA

Alpha X (from Strathclyde University)

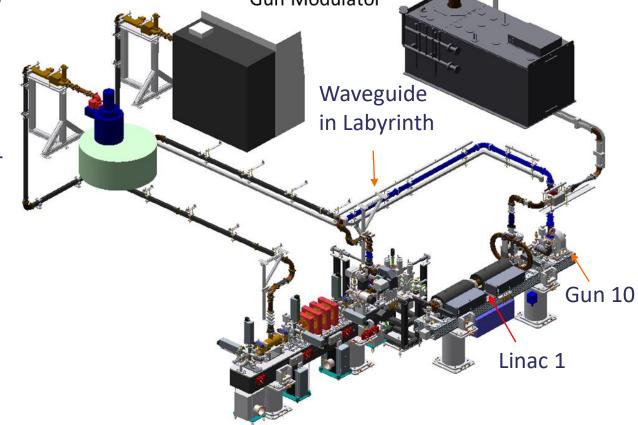
Fundamental frequency: 2998.5 MHz (TM 010- π mode)

2.5 cells S-band

Operating temperature is 31.8 °C.

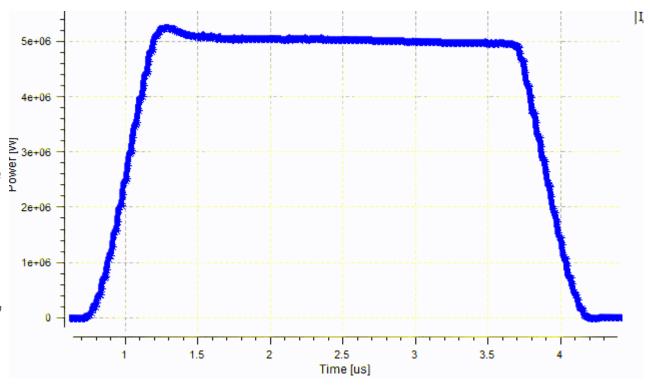
Science and

Technology Facilities Council

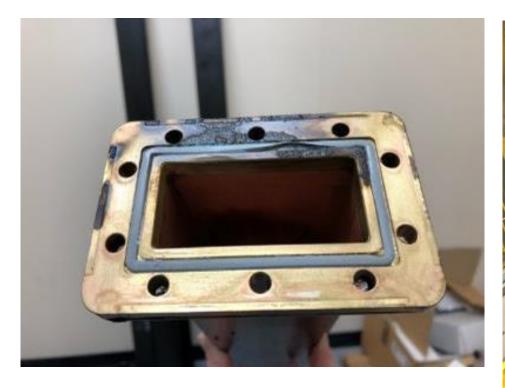

 $Q_0 = 10900$

Parameter	Specification
Frequency	2998.5 MHz
Nominal Bandwidth	5 MHz
Peak output power	> 10 MW
Power gain	> 45 dB
Efficiency	> 45 %
Pulse Repetition Rate Range	1 – 400 Hz
RF Pulse Width	Up to 3.0 μs
Maximum beam voltage	200 kV
Maximum beam current	150 A

Gun Klystron parameters

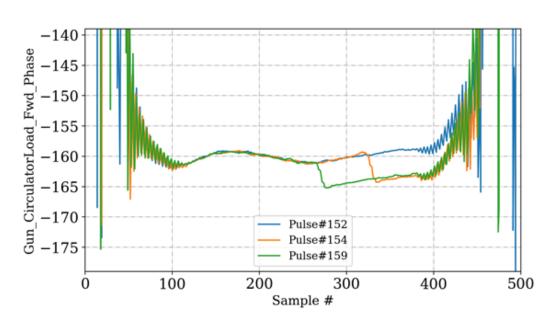


Waveguide issues since October 2020


- On machine start-up in autumn 2020, RF traces showed noise – present on Gun FWD, but not klystron FWD directional couplers, which we did not understand
- Using Libera LLRF we analysed the data for the forward power leaving the klystron and arriving at the gun – the jitter was much worse at the end far end of the waveguide
- No breakdown products detectable in SF6, pressure level 1 bar
- After 3 weeks of operations and attempts to understand where the noise was coming from, catastrophic SF6 loss in waveguide occurred
- Arcing found on many sections of the waveguide flanges

Trace showing noise at Gun end of waveguide

Waveguide sections

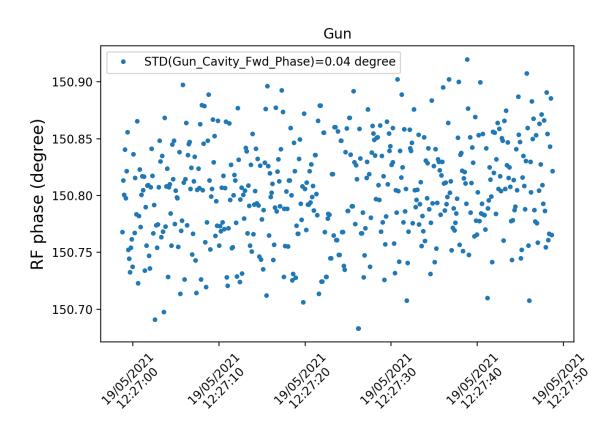


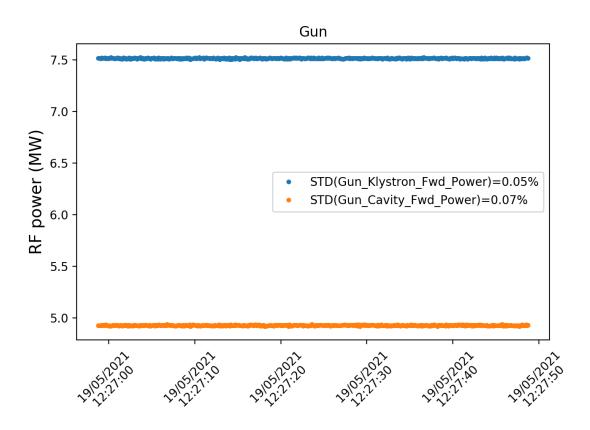
- The whole waveguide had to be removed and checked
- Some of this waveguide had not been touched for 5 years inside the concrete labyrinth
- Other sections had shown multiple examples of flange arcs
- Flange faces needed cleaning and flatting
- Procedure for waveguide is to pin the alignment to ensure flanges are aligned as good as possible
- Rebuild began once all flanges had been checked

Waveguide rebuild and testing

Gun waveguide at 500kW showing 5 degree changes in phase

- We fitted a RF waveguide load in place of the cavity
- However attempts to restart RF was problematic with noise even at power levels below 500kW
- We had to move the load further back up the waveguide path to try to isolate the issue
- Completely removed the waveguide again





- We noticed that the gasket was being pinched and where ever this happened we had a potential problem
- Eventually we changed the gasket for a different type, a thinner gasket from a different manufacturer
- May 2021 operations have started again with no further breakdown issues
- Libera LLRF is used to check jitter routinely to provide a warning
- Experimenting with microphones

Operation May 2021

Linac 2, 3, 4 and TDC installation

- Modulator testing now, DTI PowerMod, Canon E37333 80MW klystron
- Linacs installed 2022 from SwissFel
- TDC modulator is a Scandinova K200 for X band 8MW klystron CANON E37113E with CERN pulse compressor
- Libera LLRF systems on site, frequency convertor for X band system being built in house
- Modulator rooms are distributed along the length of CLARA machine
- Waveguide is vacuum type with precision flanges as higher peak powers are needed, equipment is on site

Linac 2,3,4 Modulator & Klystron Requirements

SwissFEL Linacs (Research Instruments)

Fundamental frequency: 2998.5 MHz

Active length: 4.066 m

 Maximum operational gradient: 25 MV/m

20 MV/m – 48 MW

22.5 MV/m - 60.5 MW

25 MV/m – 75 MW

Repetition Rate: Maximum 400 Hz,

Fill time: 995 ns

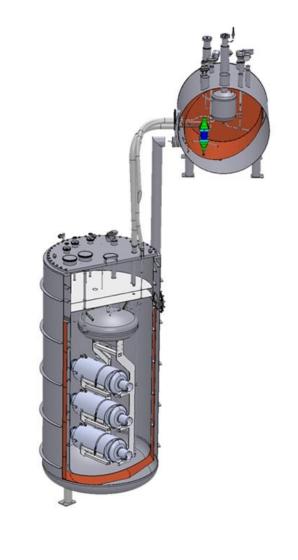
 RMS amplitude jitter tolerance: <0.1%

RMS phase jitter tolerance: <0.1°

Modulator Specification

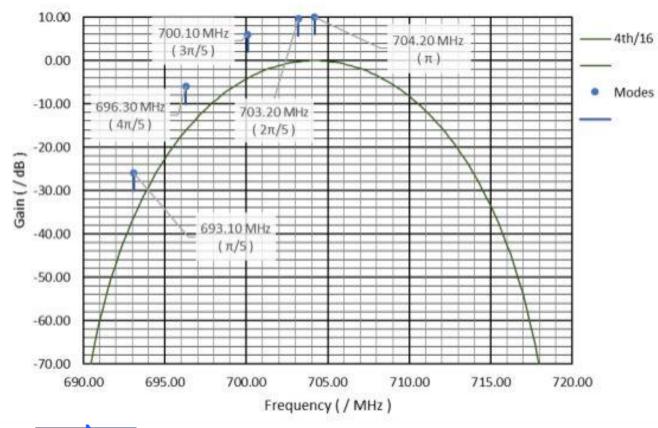
Klystron Specification

Woodilator Specification		my service permedical.	
Parameter	Specification	Parameter	Specification
Operational voltage range	45 - 450 kV	Frequency	2998.5 MHz
Operational current range	50-545 A	Nominal Bandwidth	5 MHz
Pulse repetition rate range	1-400 Hz	Peak RF output power	> 70 MW (80 MW)
HV pulse width	1.5 to 4.0µs	Average RF output power	> 20.5 kW (25 kW)
Klystron peak voltage flatness (400Hz)	± 0.1% (1 µs) -±0.02%	Power gain	> 45 dB
Klystron peak voltage flatness (100Hz)	± 0.1% (2 µs) - ±0.02%	Efficiency	> 45 %
Nominal voltage rate of rise	> 300 kV/µs - > 400 kV/µs	Pulse Repetition Rate Range	1 – 400 Hz
Voltage stability (10% to 100%)	±0.1%-±0.05%	RF Pulse Width	0.25 - 3.0 μs
Voltage reproducibility (of Vmax)	±0.2%-±0.05%	Maximum beam voltage	410 kV
Pulse to pulse timing jitter	< ± 4 ns - < ± 1 ns	Maximum beam current	495 A



ESS cavity testing

- 88 high beta SCRF cavities to be qualified
- Produced at CEA Saclay France
- Initial pre production cavity tests at DESY
- Cryogenic plant and RF system installed to test three cavities at a time



ESS RF developments

- Labview program based on Tom Powers work adapted to form basis of multi cavity test bed
- LLRF function, Self Excited Loop, in house design for electronics and software, however designer has now left, no support
- LLRF function now being taken into Labview so that multiple people can learn/adapt/change/improve design
- Will become the basis for test facilities at Daresbury

ESS cavity modes

- All 5 cavity modes are measured and a file generated mapping each cavities response and characteristic
- Both wideband and narrow SEL filters used to capture the required mode
- Original SEL system could occasional struggle if the phase angles of the modes were too close together
- Labview system is now providing a better solution through constant refinement

Conclusion

- 6 months of problems with SF6 filled waveguide
 - Discussions with other labs have identified different gaskets
 - Most labs use precision vacuum flanges rather than the type we are using
 - Problem is now solved for the moment
 - Possible upgrade to vacuum type in the future
- Linac modulator testing now, cavity installation in 2022
- ESS team testing run of 88 SCRF cavities prior to build into cryostat
- LLRF function will based on labview for our future test facilities

Thank you

Facebook: Science and Technology Facilities Council

Twitter: @STFC_matters

YouTube: Science and

Technology Facilities Council

