Libera Hadron test in SESRI

Min LI

Institute of Modern Physics, Chinese Academy of Sciences limin@impcas.ac.cn

on behalf of the Beam Diagnostics Department

Libera Workshop, June 10th, 2021

Outlines

- 1. SESRI facility introduction
- 2. SESRI BPM system and Libera Hadron test
- 3. Project plan

1 SESRI: layout

- SESRI : Space Environment Simulation and Research Infrastructure, aims at the simulation of space environment on the ground.
- The proton and heavy ion accelerator: supply 100-300MeV protons and 7-85MeV/u heavy-ions
- > the ECR ion source: provide all stable nuclide beams from H_2^+ to Bi
- The linac injector : supplies 1MeV/u heavy ion beams and 5MeV proton beam
- The synchrotron: accelerates heavy ions up to 85MeV/u and proton beam 300MeV

1 SESRI : the main parameters of the synchrotron

	Circumference(m)	43.8864		
	Magnetic rigidity($T \cdot m$)	$0.28 {\sim} 2.8$		
Main Parameters	Accelerating time(s)	$0.53 \sim 0.81$		
	Period(s)	$3 \sim 10$		
	Repetition frequency(Hz)	$0.1 \sim 0.3$		
	Energy(MeV/u)	$ 1 (^{4}\text{He}^{2+} \sim ^{209}\text{Bi}^{32+}), 5(p) $		
Input beam	Momentum dispersion($\Delta P/P$)	$\leq \pm 2 \times 10^{-3}$		
	$\operatorname{Emittance}(\pi\mathrm{mm}\cdot\mathrm{mrad})$	$\leq 13 \ (6\sigma)$		
	$ \text{Ion:p} \sim^{209} \text{Bi}^{32+}$			
Beam in synchrotron	Energy(MeV/u)	$300(p), 80({}^{4}He^{2+}), 15({}^{84}Kr^{18+}), 7({}^{209}Bi^{32+})$		
	Beam intensity(ppp): ⁴ He ²⁺ $\sim ^{209}Bi^{32+}$	$1.1 \times 10^6 \sim 1.1 \times 10^7 (p:1.1 \times 10^9)$		
	Beam instensity(p/spill)	$1 \times 10^6 \sim 1 \times 10^9$		
Beam in terminal	Momentum dispersion $(\Delta P/P)$	2×10^{-3}		
	$\operatorname{Emittance}(\pi \operatorname{mm} \cdot \operatorname{mrad})$	i ≤10		
	Super-period	6		
Lattice parameters	$\operatorname{Tune}(\operatorname{Q}_x/\operatorname{Q}_y)$	1.72/1.62(Injection),		
		1.68/1.62(Extraction)		
	Acceptance $A_h/A_v(\pi \text{ mm} \cdot \text{mrad})$	$200/30(\Delta P/P=\pm 0.5\%)$		

courtesy of H. P. Jiang

2 layout of the synchrotron

BPM	measurements	notes			
Beam current	5 orders	range of front-end electronics			
Sample rate	250MHz				
Raw data	2-3ms/second	Multi-turn injection			
Bunch-by-bunch position	RF reference signal	RF reference phase			
Closed orbit	Averaged orbits	adjustable			
resolution	Closed orbit: < 0.1mm	Proton current:1.0×10 ⁹			
Closed orbit rate	100Hz for orbit feedback 5Hz for orbit monitor				
Abnormal status	Amplitude of sum signal	add an abnormal parameter			

2 BPM measurement system

2 BPM measurement system: Impedance transformer

- The developed impedance transformer can be used in heavy-ion accelerator
- However, the signal was attenuated obviously by the impedance transformer & 50 Ohm-amplifier compared with the high-z amplifier scheme

2 Amplifier 110 test

- > All the amplifier 110s were calibrated in the lab by a network analyzer
- Good gain consistency between amplifier channels
- Test results are consistent with the factory parameters

2 Amplifier 110 & Libera Hadron test

- The BPM measurement system was set in the lab with Amplifier 110, libera hadrons, signal generators, LLRF system and so on
- > System functions were verified by this test environment

2 Libera Hadron: position measurement

- Ander

> x-axis: sample No, SA data, 1kHz

➤ y-axis: X,Y position, unit: nm

Channel A and D was added 2dB, 3dB attenuation

2 Libera Hadron: position resolution analyzation

the position resolution performance measurement:

- different number of bunch position, different shapes, and different frequencies of beam signal
- The position resolution is less than 1um, and the position resolution meets the physical requirements

2 Libera Hadron: position resolution test

Different number of bunches' position are averaged to obtain the position resolution

	<i>σx</i> (nm)	<i>σy</i> (nm)
Bunch	639	622
10 kHz	169(118)	214(106)
1 kHz	64	67
10 Hz	64	63

> Bunch : average and statistic 2000 bunches position resolution

- ➤ 10 kHz: position resolution of fa data
- ➤ 1 kHz: every 10 points averaged from 10kHz
- ➤ 10 Hz: sa data from libera hadron

2 Libera Hadron: position resolution

Different shapes and frequencies are simulated as beam signal and input into libera hadron

Sine waveform

Gaussian waveform

resolution Frequency	<i>σx</i> (um)	σy (um)	resolution Frequency	<i>σx</i> (um)	σy (um)
1 MHz	0.316	0.473	1 MHz	0.322	0.481
2 MHz	0.222	0.341	1.2 MHz	0.336	0.498
3 MHz	0.185	0.291	1.5 MHz	0.271	0.424
4 MHz	0.162	0.254	1.8 MHz	0.249	0.366
5 MHz	0.127	0.176	2 MHz	0.224	0.338

Note: the maximum frequency is 2.4MHz while AFG3252 generates gaussian signal

3 Libera Hadron: machine synchronization 10 MHz

Two libera hadron crates were first synchronized by DDS or signal generator

2 BPM calibration in the lab in SESRI

 the BPM which can measure the horizontal and vertical position was calibrated in the lab

-30 -40 -50 Delta/Sigma

kx calibration

2 Libera grouped data process in SESRI

- And - And

6 BPM modules interconnected in the closed orbit feedback

- Position data from 12 BPMs is grouped together
- Grouped positions are transferred to a compactRIO NI 9065(real time system&FPGA) by UDP @FPGA, then parsed, processed and rearranged into a big waveform with the length size 36000 in the whole cycle
- The closed orbit of the whole accelerator cycle data is published by a PV @RT target @100 Hz

2 Multi-turn raw data monitor

- to monitor the raw BPM data while multi-turn injection
- > the data rate should be decimated to 1MHz or 25MHz with a ratio parameter
- the display data length should be 2500
- monitor the data in 2-3ms every 1 second (The sample rate is 250MSa/s fixed, which means the maximum length reaches 750000 samples for each pickup each time
- The sample time can be delayed in the range of 0-5ms and the delay precision is in 1 us, which refers to the T2 trigger signal, this has been completed
- > 24 pickups raw data are required to be monitored at the same time

2 BPM control panel in SESRI

3 Project plan

- The
- The beam diagnostics detectors of synchrotron and HEBT are being installed since June
- > The Accelerator will be commissioned by the end of this year