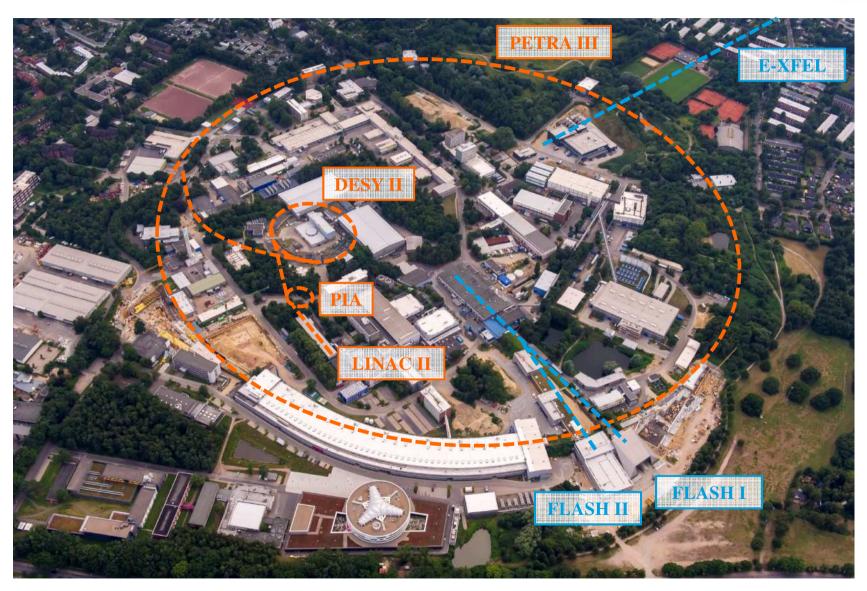


BPM Studies in view of PETRA IV


Gero Kube

DESY (Hamburg)

- Introduction
- Overview and Particularities of PETRA IV
- Beam Position Monitors
- Test Measurements at PETRA III

DESY Accelerator Complex (User Facilities)

PETRA III @ DESY

PETRA history

 \rightarrow 1978 – 1986: e⁺e⁻ collider (up to 23.3 GeV / beam)

▶ 1988 – 2007: pre-accelerator for HERA (p @ 40 GeV, e @12 GeV)

> since 2007: dedicated 3rd generation light source, commissioned in 2009 TDR: DESY 2004-035

→ 14 beamlines (15 experimental stations) operating in parallel

> from 2014: staged extension project W. Drube et al., 2016 https://doi.org/10.1063/1.4952814

→ *up to 12 additional beamlines* (presently not all of them in operation)

Extension Hall East *Ada Yonath*

Max von Laue Hall

Extension Hall North Paul P. Ewald

PETRA III @ DESY

- consequence of re-using HEP structure
 - large circumference
 - → beamlines not all around the machine
 - → small natural emittance(+ space for damping wigglers)
 - different machine sectors
 - \rightarrow 8 arcs: $L_{arc} = 201.6 \text{ m}$
 - \rightarrow 4 long straight sections: $L_{lss} = 108 \text{ m}$
 - \rightarrow 4 short straight sections: L_{sss} = 64.8 m
- PETRA III concept
 - > one octant with DBA lattice
 - \rightarrow 9 cells / arc, L_{DBA}=23 m

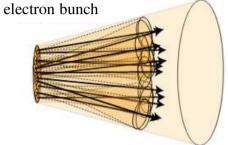
(P3X: 2 additional DBA cells in 2 octants)

- > canted undulator beamlines: (14 out of possible 26)
 - \rightarrow canting angles 5 / 20 mrad
- remaining part: FODO lattice + dispersion suppressors

asymmetric ring structure

Circumference: 2304 m	N 1	octant	
NW ex	Rf hall perimental hall		Undulator
access tunnels long strai		DORIS	₩801°E
shor sect	tstraight ion Rf halls		n channel
5" ~	-luomi-	1 1	PETRA (schematic)

Parameter			
Energy	(6	GeV
Circumference	23	04	\mathbf{m}
Emittance (hor. / vert.)	1.2 /	0.012	nm rad
Total current	10	00	mA
Number of bunches	960	40	
Bunch population	0.5	12	$10^{10} e^{-}$
Bunch separation	8	192	ns


Diffraction Limited Storage Ring

PETRA III

• "diffraction" limited

single electron

PETRA IV electron bunch

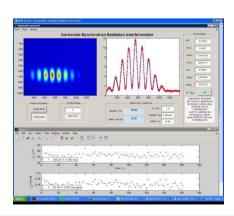
e -

• natural emittance scaling

$$\varepsilon_{\chi} \propto \gamma^2 \theta^3 \Gamma$$

 $\gamma = E/_{m_0c^2}$

 θ :


Γ:

Lorentz factor

bending magnet angular deflection

magn. lattice design of storage ring

- emittance reduction
 - reduction of beam energy

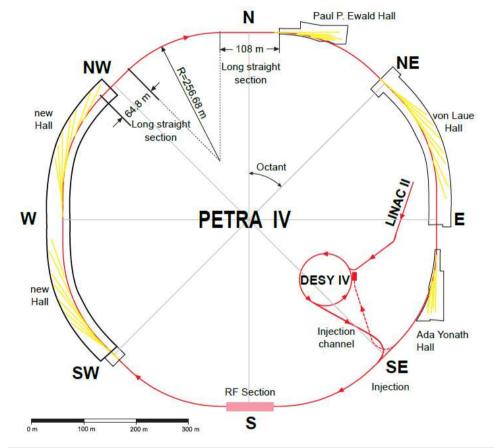
PETRA III operated @ 3 GeV

 $\rightarrow~\epsilon_x\approx 150~pm.rad$

but: E defines radiation spectrum

 $\hbar\omega_c \approx 0.665E^2B$

- reduce deflection angle θ per bending
 - \rightarrow from *double* bend achromat (2) to *multi* bend achromat (5, 7, 9, ...)
 - → MAX IV paved the way
 - → others followed / will follow soon(SIRIUS, ESRF-EBS, ...)



PETRA IV

PETRA IV: Overview

• PETRA IV storage ring and pre-accelerators

Design parameter	PETRAIII		PET	PETRA IV	
Energy / GeV	6			6	
Circumference / m	2304		2	304	
Operation mode	Continuous	Timing	Brightness	Timing	
Emittance (horz. / vert.) / pm rad	1300 /	10	< 20 / 4	< 50 / 10	

• use of old accelerator tunnel

→ HEP structure remains

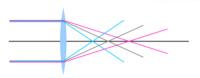
asymmetric ring structure

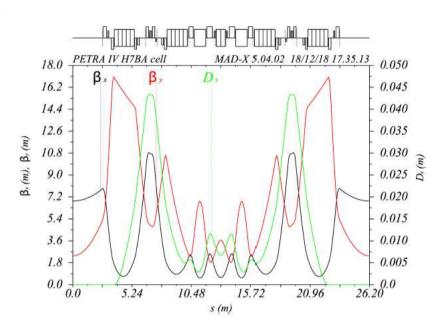
- \rightarrow reduced momentum / dynamic acceptance (estimated: factor 1.5 2)
- → beam dynamics safely under control

no canted undulator beamlines forseen

- → strong emittance increase
- → additional experimental hall
 (30 straight ID sections)

PETRA IV Lattice




- ♠ Extremely low emittances → strong focusing required
 - consequence
 - → large negative chromaticity has to be compensated
 - needs strong sextupoles
 - → negative impact on nonlinear beam dynamics
 - → strong decrease of dynamic / momentum aperture
- Hybrid-Multibend Achromat (HMBA)
 - based on 7-bend achromat
 - → ESRF-EBS J. Biasci et al., Sync. Rad. News 27 (2014) 8
 - > creation of two dispersion bumps
 - → inside bumps: three sextupole families installed
 - → helps to significantly reduce sextupole strength
 - \rightarrow cell length L_{HMBA} = 26.2 m (PETRA III: L_{DBA} = 23 m)
 - → beamline configuration of PETRA III cannot be preserved
 - \rightarrow 8 HMBA cells / arc

64 HMBA cells

further emittance reduction via reverse bends \rightarrow in discussion

- straight sections
 - 4 with space for 10m-IDs
 - remaining straights
 - → based on FODO structure

PETRA IV: Operation Modes

from PETRA III to PETRA IV

Design Parameter	PETF	RA III
Energy / GeV	6	
Circumference /m	23	04
Emittance (horz. / vert.) /pm	1300	/ 10
Total current / mA	100	
Number of bunches	960	40
Bunch population / 10 ¹⁰	0.5	12
Bunch separation / ns	8	192

design goal:

 \times 65 smaller ϵ_x

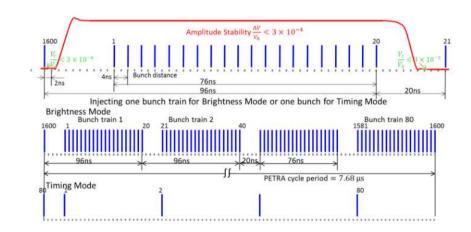
5
04
<50 / 10
80
80
5
96

PETRA IV

timing structure

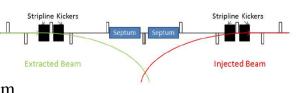
- \rightarrow general fill pattern \rightarrow 80 x *Bunch Train*
- bunch train duration: 96 ns

$$\rightarrow$$
 80 × 96 ns = 7.68 µs = T_{rev}


brightness mode → Bunch Train = 20 bunches

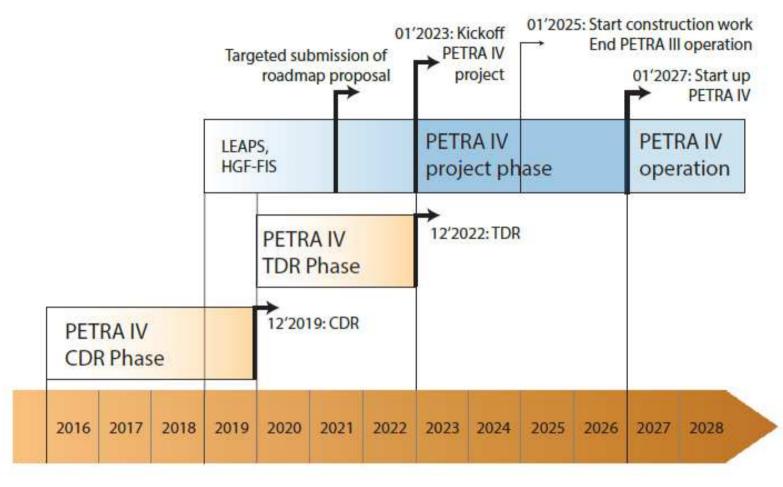
4 ns spacing + 20 ns kicker gap

 \rightarrow timing mode \rightarrow Bunch Train = 1 bunch


brightness mode

timing mode

• injection scheme


- swap-out on-axis injection
 - \rightarrow dynamic aperture on average larger than 5σ of injected beam

- max. intensity variation < 10%
 - → injection rate 0.5 Hz(timing mode)

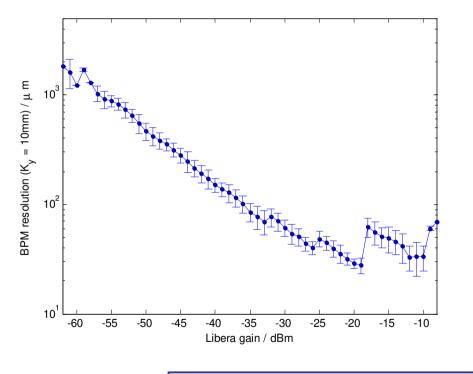
PETRA IV: Timeline

C.G. Schroer et al., PETRA IV: Upgrade of PETRA III to the Ultimate 3D X-ray Microscope. Conceptual Design Report

• presently: beginning phase of *Technical Design Report*

PETRA IV: Beam Position Monitors

- information available
 - number of BPMs
 - → 11 BPMs per HMBA cell (present status)
 64 cells, i.e. 704 BPMs in the arc section
 8 BPMs in short, 12 BPMs in long straight sections


- pickup chamber
 - \rightarrow arc section: round beam pipe, Ø 20 mm
 - → ID section: not yet defined undulator chambers something similar to PETRA III
 - → material: stainless steel (probably)
 - → mechanically fix points: connected via RF shielded bellows to vacuum chambers
- resolution
 - \rightarrow single bunch / turn: < 20 µm (assuming 0.5 mA in single bunch \rightarrow 2.5×10¹⁰ particles bunch)
 - \rightarrow closed orbit: < 100 nm (rms, 200 mA in 1600 bunches) @ 300 Hz BW
- resolution studies @ PETRA III
 - \rightarrow consider only read-out electronics \rightarrow assume $K_{x,y} = 10 \text{ mm}$

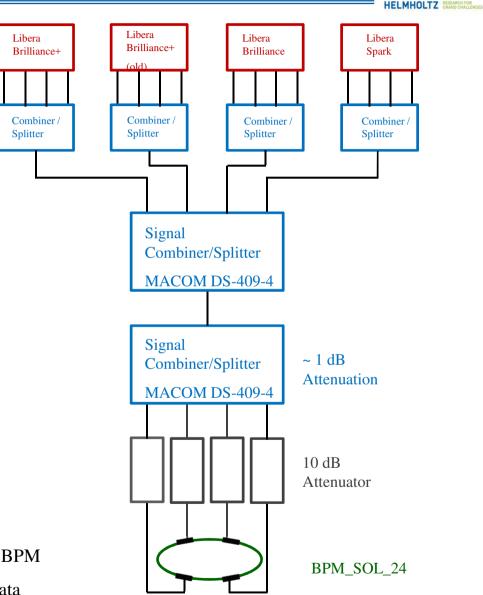
PETRA IV: TbT Single Bunch Resolution

- first step: Libera Brilliance
 - use all devices (246) @ PETRA III for orbit measurements
 - > correlation analysis (PCA) to eliminate corelated jitter

G. Kube et al., Proc. IBIC 2019, WEPP005

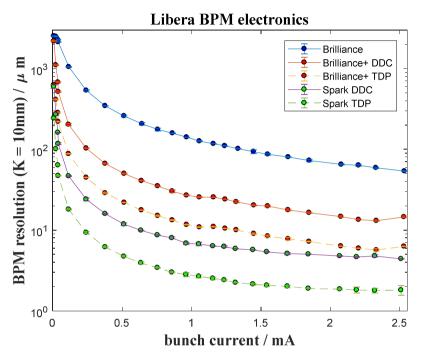
 $min(RMS_{x,y}) \approx 30 \mu m$

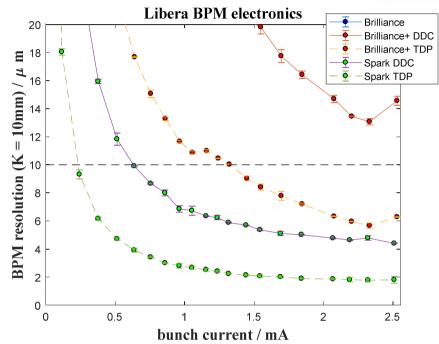
Libera Brilliance resolution not sufficient for PETRA IV


• CDR: rely on Libera Brilliance+

(estimated from S. Condamoor et al., Proc. IBIC 2018, TUPB12)

Test of Read-out Electronics




- beam test @ PETRA III: december 2018
 - Libera Brilliance
 - → BPM_SOL_24, in use at PETRA III
 - Libera Brilliance+
 - → CDR: PETRA IV system
 - → one system bought for DORIS / Olympus
 - → one system recently bought
 - Libera Spark
 - → new platform, no long-term stabilization
 - → borrowed from I-Tech (thanks!)
- BPM TbT resolution determination
 - > orbit data contain contributions due to
 - → correlated beam jitter
 - → noise of BPM electronics
- disentangle contributions
 - \rightarrow correlation analysis \rightarrow does not work for single BPM
 - → eliminate correlated jitter → sum & split orbit data

Resolution Comparison

Libera Brilliance+

digital down conversion (DDC)

 σ < 10 µm never achieved

$$\sigma = 19.8 \,\mu m$$
 @ $I_B = 1.549 \,\text{mA} \, (-29 \,\text{dB})$

 \rightarrow correct for attenuation: $I_B = 0.38 \text{ mA} \ (\approx -42 \text{ dB})$

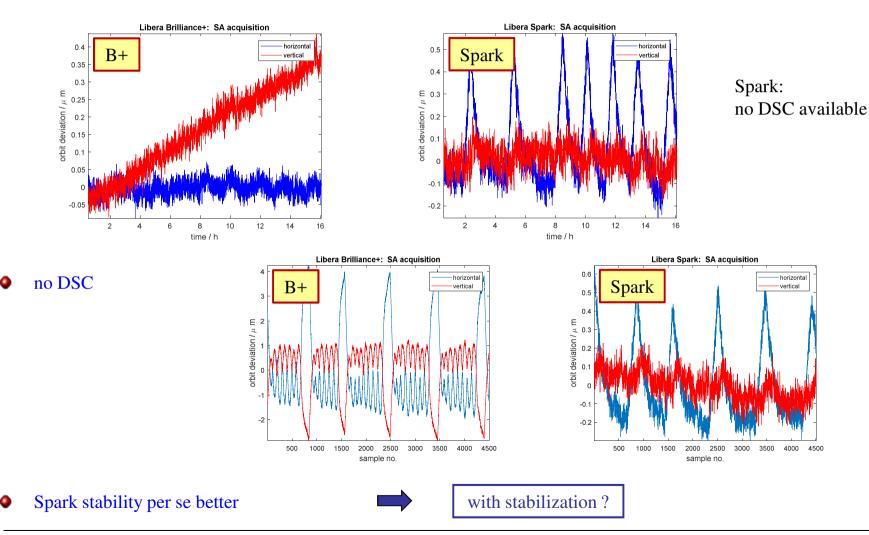
time domain processing (TDP)

$$\sigma = 10.3 \,\mu m$$
 @ $I_B = 1.323 \,\text{mA}$ (-30 dB)

 \rightarrow correct for attenuation: $I_B = 0.38 \text{ mA}$

DDC mode $< 20 \ \mu m \ (rms) \rightarrow I_B \approx 0.4 \ mA$

TDP mode $~\approx 10~\mu m \; (rms) ~\rightarrow ~I_B \approx 0.4 \; mA$


would fulfil requirements

→ but Libera Spark is better...

Long Term Stability

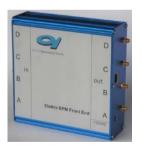
- user operation: 480 bunches @ 100 mA, top-up

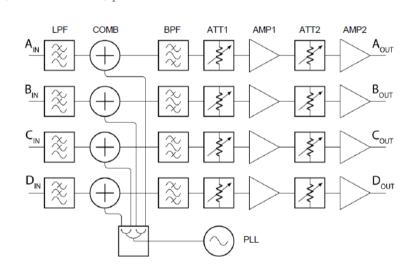
Pilot Tone Stabilization

- pilot tone (PT) as reference signal for calibration / compensation
 - > signal path is the same for carrier and pilot
 - several proposals

SLS: M. Dehler et al., Proc. DIPAC'99, p. 168

NSLS II: J. Mead et al., Proc. IBIC'14, p. 500

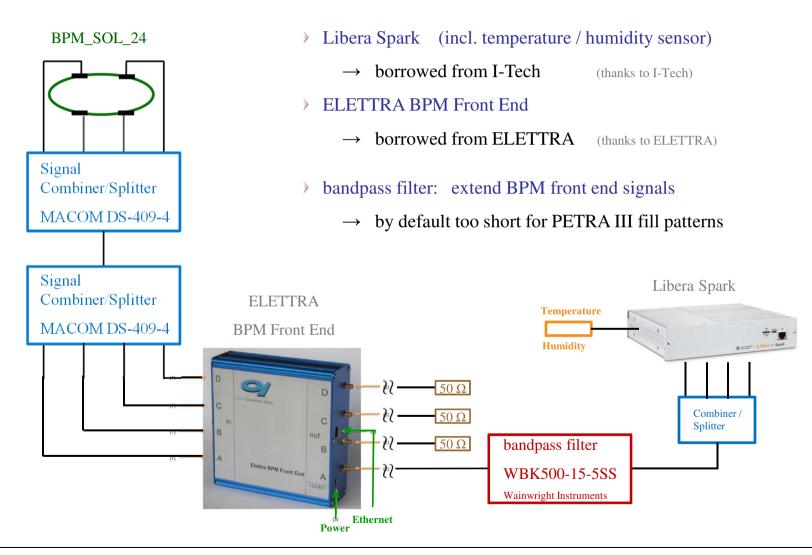

SIRIUS: R.A. Baron et al., Proc. IBIC'13, p. 670


ELETTRA: G. Brajnik et al., AIP Conf. Proc. 1741 (2016) 020013

ELETTRA BPM front end

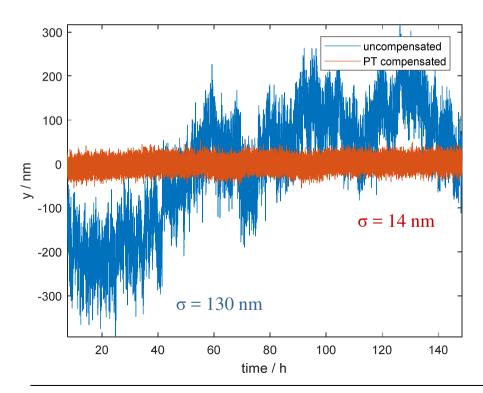
G. Brajnik et al., Proc. IBIC'16, p. 307

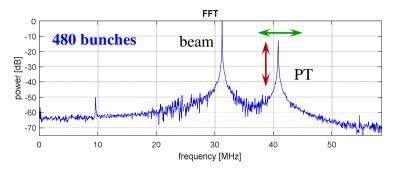
- modular approach
 - → analog front end in accelerator tunnel
 - → digitizer in electronics cabinet

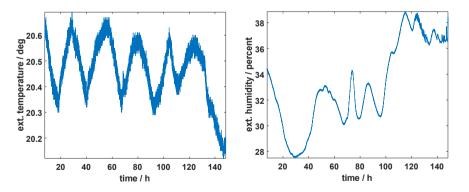


- ELETTRA front end in combination with Libera Spark
 - M. Cargnelutti et al., Stability Tests with Pilot-Tone Based Elettra BPM RF Front End and Libera Electronics, Proc. IBIC'18, TUPB013
 - D. Bisiach et al., Beam Measurements Results of a BPM System Implementing the Pilot-Tone Stabilization Concept, Proc. IBIC'19, WEPP012 (unpublished)

Setup at PETRA III


• beam tests @ PETRA III


Measurements and Reuslts


- optimization of pilot tone (PT) settings
 - > scan of PT amplitude
 - > scan of PT frequency
- "long term" measurement for optimized settings
 - 6.8 days (december 2019)

ADC spectrum @ intermediate frequency ($f_{IF} = \left| \operatorname{rnd} \left(\frac{f}{f_{ADC}} \right) \cdot f_{ADC} - f \right|$)

> environmental changes

excellent long term stability

Summary and Conclusion

- PETRA IV
 - new diffraction limited light source @ DESY
 - \rightarrow start up planned 01/2027
- BPM system
 - about 800 BPMs for orbit control
 - → space for read-out electronics becomes an issue (and for sure: price...)

no AGC....

- compact design
- Libera Brilliance
 - \rightarrow single bunch resolution \rightarrow specs not fulfilled for PETRA IV
- Libera Brilliance+
 - \rightarrow (present) specs fulfilled \rightarrow old platform, space...
 - new Libera Brilliance+ (talk Peter Leban)
- Libera Spark
 - > single bunch resolution much better
 - in combination with PT front end
 - → long term stability very nice

- user wish
 - > take Spark / new Brilliance+
 - integrate PT method
 - everything based on μTCA.4

sell for low price