

BPM Studies in view of PETRA IV

Gero Kube DESY (Hamburg)

- Introduction
- Overview and Particularities of PETRA IV
- Beam Position Monitors
- Test Measurements at PETRA III

DESY Accelerator Complex (User Facilities)

PETRA III @ DESY

• PETRA history

- > 1978 1986: e^+e^- collider (up to 23.3 GeV / beam)
- ▶ 1988 2007: pre-accelerator for HERA (p @ 40 GeV, e @12 GeV)
- since 2007: dedicated 3rd generation light source, commissioned in 2009 TDR: DESY 2004-035
 - \rightarrow 14 beamlines (15 experimental stations) operating in parallel
- from 2014: staged extension project W. Drube et al., 2016 https://doi.org/10.1063/1.4952814
 - \rightarrow *up to 12 additional beamlines* (presently not all of them in operation)

Extension Hall North Paul P. Ewald

Extension Hall East Ada Yonath

Max von Laue Hall

Gero Kube, DESY / MDI

PETRA III @ DESY

- consequence of re-using HEP structure
 - > large circumference
 - \rightarrow beamlines not all around the machine
 - \rightarrow small natural emittance
 - (+ space for damping wigglers)
 - different machine sectors
 - \rightarrow 8 arcs: L_{arc} = 201.6 m
 - \rightarrow 4 long straight sections: L_{lss} = 108 m
 - \rightarrow 4 short straight sections: L_{sss} = 64.8 m

• PETRA III concept

- > one octant with DBA lattice
 - \rightarrow 9 cells / arc, L_{DBA}=23 m

(P3X: 2 additional DBA cells in 2 octants)

- canted undulator beamlines: (14 out of possible 26)
 - \rightarrow canting angles 5 / 20 mrad
- remaining part: FODO lattice + dispersion suppressors

Parameter			
Energy	(5	GeV
Circumference	23	04	m
Emittance (hor. / vert.)	1.2 /	0.012	nm rad
Total current	10	00	mA
Number of bunches	960	40	
Bunch population	0.5	12	$10^{10} e^{-10}$
Bunch separation	8	192	ns

Diffraction Limited Storage Ring

• "diffraction" limited

reduction of beam energy

PETRA III operated @ 3 GeV

 $\rightarrow \epsilon_x \approx 150 \text{ pm.rad}$

but: E defines radiation spectrum $\hbar\omega_c \approx 0.665E^2B$

- > reduce deflection angle θ per bending
 - \rightarrow from *double* bend achromat (2)

to *multi* bend achromat (5, 7, 9, ...)

- \rightarrow MAX IV paved the way
- → others followed / will follow soon (SIRIUS, ESRF-EBS, ...)

PETRA IV: Overview

PETRA	A III	PETR	AIV
6		6	
2304		230	4
Continuous	Timing	Brightness	Timing
1300 /	10	< 20 / 4	< 50 / 10
	PETRA 6 2304 Continuous 1300 /	PETRA III 6 2304 Continuous Timing 1300 / 10	PETRA IIIPETR662304230Continuous TimingBrightness1300 / 10< 20 / 4

- use of old accelerator tunnel
 - \rightarrow HEP structure remains
- > asymmetric ring structure
 - → reduced momentum / dynamic acceptance (estimated: factor 1.5 - 2)
 - \rightarrow beam dynamics safely under control
- > no canted undulator beamlines forseen
 - \rightarrow strong emittance increase
 - \rightarrow additional experimental hall
 - (30 straight ID sections)

15th Libera Online Workshop, June 17, 2020

PETRA IV Lattice

- Extremely low emittances \rightarrow strong focusing required
 - consequence
 - \rightarrow large negative chromaticity has to be compensated
 - needs strong sextupoles
 - \rightarrow negative impact on nonlinear beam dynamics
 - \rightarrow strong decrease of dynamic / momentum aperture
- Hybrid-Multibend Achromat (HMBA)
 - based on 7-bend achromat
 - → ESRF-EBS J. Biasci et al., Sync. Rad. News 27 (2014) 8
 - creation of two dispersion bumps
 - \rightarrow inside bumps: three sextupole families installed
 - \rightarrow helps to significantly reduce sextupole strength
 - cell length $L_{HMBA} = 26.2 \text{ m}$ (PETRA III: $L_{DBA} = 23 \text{ m}$)
 - \rightarrow beamline configuration of PETRA III cannot be preserved
 - \rightarrow 8 HMBA cells / arc

- 64 HMBA cells
- > further emittance reduction via reverse bends \rightarrow in discussion

- > 4 with space for 10m-IDs
- remaining straights
 - \rightarrow based on FODO structure

PETRA IV: Operation Modes

from PETRA III to PETRA IV

Design Parameter	PETE	RAШ	
Energy / GeV	(5	
Circumference /m	23	04	
Emittance (horz. / vert.) /pm	1300	/ 10	
Total current / mA	1(100	
Number of bunches	960	40	
Bunch population / 10 ¹⁰	0.5	12	
Bunch separation / ns	8	192	

-		
1	iming	structure
		bulactare

- general fill pattern \rightarrow 80 x Bunch Train
- bunch train duration: 96 ns
 - $\rightarrow 80 \times 96 \text{ ns} = 7.68 \ \mu\text{s} = T_{rev}$
- *Bunch Train* = 20 bunches brightness mode \rightarrow 4 ns spacing + 20 ns kicker gap
- timing mode *Bunch Train* = 1 bunch
- injection scheme
 - swap-out on-axis injection
 - dynamic aperture on average Extracted Beam larger than 5σ of injected beam

	PETE	RAIV
-	(5
oal:	2304	
•	< 20 / 4	<50 / 10
	200	80
ε _x ΄	1600	80
	0.6	5
•	4 + gaps	96

brightness mode

Injected Beam

Stripline Kickers

timing mode

- injection rate 0.5 Hz
 - (timing mode)

PETRA IV: Timeline

C.G. Schroer et al., PETRA IV: Upgrade of PETRA III to the Ultimate 3D X-ray Microscope. Conceptual Design Report

presently: beginning phase of *Technical Design Report* ٠

PETRA IV: Beam Position Monitors

• information available

- > number of BPMs
 - \rightarrow 11 BPMs per HMBA cell (present status)

64 cells, i.e. 640 BPMs in the arc section

8 BPMs in short, 12 BPMs in long straight sections

- pickup chamber
 - \rightarrow arc section: round beam pipe, Ø 20 mm
 - \rightarrow ID section: not yet defined

undulator chambers something similar to PETRA III

- \rightarrow material: stainless steel (probably)
- → mechanically fix points: connected via RF shielded bellows to vacuum chambers
- resolution
 - \rightarrow single bunch / turn: < 20 µm (assuming 0.5 mA in single bunch \rightarrow 2.5×10¹⁰ particles bunch)
 - \rightarrow closed orbit: < 100 nm (rms, 200 mA in 1600 bunches) @ 300 Hz BW
- resolution studies @ PETRA III
 - ▷ consider only read-out electronics \rightarrow assume K_{x,v} = 10 mm

Gero Kube, DESY / MDI

784 BPMs (guess)

PETRA IV: TbT Single Bunch Resolution

first step: Libera Brilliance 0

- use all devices (246) @ PETRA III for orbit measurements
- correlation analysis (PCA) to eliminate corelated jitter

G. Kube et al., Proc. IBIC 2019, WEPP005

(estimated from S. Condamoor et al., Proc. IBIC 2018, TUPB12)

Test of Read-out Electronics

Resolution Comparison

Gero Kube, DESY / MDI

15th Libera Online Workshop, June 17, 2020

Long Term Stability

- user operation: 480 bunches @ 100 mA, top-up
 - → all Liberas in closed orbit (SA) mode \rightarrow
- · drift compensation (digital signal conditioning, DSC) on

Pilot Tone Stabilization

- pilot tone (PT) as reference signal for calibration / compensation
 - > signal path is the same for carrier and pilot
 - several proposals
 - SLS: M. Dehler et al., Proc. DIPAC'99, p. 168
 - NSLS II: J. Mead et al., Proc. IBIC'14, p. 500
- ELETTRA BPM front end

G. Brajnik et al., Proc. IBIC'16, p. 307

SIRIUS:

- > modular approach
 - \rightarrow analog front end in accelerator tunnel
 - \rightarrow digitizer in electronics cabinet

R.A. Baron et al., Proc. IBIC'13, p. 670

ELETTRA: G. Brajnik et al., AIP Conf. Proc. 1741 (2016) 020013

ELETTRA front end in combination with Libera Spark

M. Cargnelutti et al., Stability Tests with Pilot-Tone Based Elettra BPM RF Front End and Libera Electronics, Proc. IBIC'18, TUPB013

D. Bisiach et al., Beam Measurements Results of a BPM System Implementing the Pilot-Tone Stabilization Concept, Proc. IBIC'19, WEPP012 (unpublished)

Setup at PETRA III

• beam tests @ PETRA III

Measurements and Reuslts

- optimization of pilot tone (PT) settings
 - scan of PT amplitude
 - scan of PT frequency
- "long term" measurement for optimized settings
 - 6.8 days (december 2019)

ADC spectrum @ intermediate frequency ($f_{IF} = \left| \operatorname{rnd} \left(\frac{f}{f_{ADC}} \right) \cdot f_{ADC} - f \right|$)

• environmental changes

Summary and Conclusion

• PETRA IV

- new diffraction limited light source @ DESY
 - \rightarrow start up planned 01/2027
- BPM system
 - > about 800 BPMs for orbit control
 - \rightarrow space for read-out electronics becomes an issue

- compact design
- Libera Brilliance
 - > single bunch resolution \rightarrow specs not fulfilled for PETRA IV
- Libera Brilliance+
 - ▷ (present) specs fulfilled \rightarrow old platform, space...

new Libera Brilliance+ (talk Peter Leban)

- Libera Spark
 - single bunch resolution much better
 - > in combination with PT front end
 - \rightarrow long term stability very nice

no AGC, ...

(and for sure: price...)