Automated Management of SPARK Module IOCs in SPEAR3

Filippos Toufexis, PhD

Electronics Engineer, SSRL, SLAC ftouf@slac.stanford.edu

Libera Workshop, June 17th, 2020

SSRL/SPEAR3 **3rd Generation Synchrotron** 3 GeV / 500 mA 234 m circumference 1

SPEAR3 Accelerator Complex

- Linac:
 - 120 MeV
 - Thermionic RF gun
 - 2.856 GHz
 - Commissioned in 1990
- Booster:
 - 3 GeV
 - 10 Hz resonant circuit
 - 358 MHz
 - Commissioned in 1990
 - Top-Off injection every 5 minutes
- SPEAR3 Storage Ring
 - 3 GeV
 - 500 mA
 - 476 MHz
 - 10 nm emittance (6 nm with new septum)
 - Commissioned in 2004

BPM Systems in SPEAR3 Accelerator Complex

- Transport Lines:
 - 1990's-era Bergoz BPM processors with ~300 um resolution
 - Last two BTS BPMs upgraded to SLAC uTCA processor with ~50 um resolution
 - Last two BTS BPMs physically different than the rest (longer, smaller ID)
 - Recently purchased 2 + spare SPARK-EL to replace uTCA due to maintenance issues
- Booster:
 - Legacy system comprised single BPM processor and multiplexers to switch BPMs
 - Currently have 2 + spare SPARK-ERXR in the booster
 - Designing a multiplexer system to replace legacy multiplexers
- SPEAR:
 - Bergoz processors for operations and FOFB (no intention of upgrading)
 - In-house Echoteck TbT processors for Accelerator Physics are reaching end of life
 - 1 SPARK-ERXR for Accelerator Physics

Considerations for SPARK deployment

- SPEAR3 operates with a very small team
- Most Operators do not have the skills to log in and configure modules
- We need an Operator to be able to swap a failed module in the middle of the night with only guidance over the phone

uSD-based Deployment:

- Easy to swap modules
- uSD spares hard to maintain
- Need 2 uSD per BPM
- Extremely hard to upgrade firmware

Network boot-based Deployment:

- Easy to maintain and upgrade
- Need to involve the network group to swap modules

Network boot with Hostname/PV prefix DB

- Perform Network boot
- Hostnames based on BPM Processor model + Number, e.g. SPARK_EL_5
 - No connection with a physical BPM
- BPM Processor to Physical BPM mapping:
 - Handled with a Soft IOC
 - Startup script on the BPM Processor queries the Soft IOC which BPM am I assigned?
- If module fails in the middle of the night:
 - Operator assigns a spare processor to the BPM the previous module fails in EDM panel
 - Physically swaps the modules & powers up the new module
 - Network group updates a repaired module in DHCP later during normal business hours
- We can bring spare modules online to check them without affecting ops

Network boot with Hostname/PV prefix DB

Network Infrastructure Soft IOC Database EDM Panel **Transport Lines TFTP server supplies the boot image** TFTP **SPARK Mapping** SPARK EL O **BTS-BPM09** LTB-BPM02 SPARK EL 1 DHCP server holds mapping MAC PV Value address -> hostname DHCP SPARK EL 0 → BTS-BPM09 00:A0:C9:14:C8:29 -> SPARK EL 4 Booster SPARK EL 1 → BTS-BPM04 Stores IOC files & tmp files SPEAR Mount point for each hostname: SPARK EL N → TEST NFS /.../SPARK EL 3 Mount point for each physical BPM: SPARK EL M → UNASIGNED /.../BTS BPM8

SPARK Boot Sequence (simplified)

Looking under the hood – Transport Line Assignment

Looking under the hood – PV Prefix

Similarly get BPM #	BPMNUMBER="\$(head -n 1 \$IOC_CONFIG/bpmName)" BPM08
Calculate PV Prefix	BPM_PREFIX="SPARK-\$TRANSPORTLINE-\$BPMNUMBER"
Series of checks on PV Prefix	<pre>if ["\$BPM_PREFIX" == "SPARK-LTB-BPM08"] SPARK-BTS-BPM08 then CAPUT_EXIT_STATUS=\$(exec \$CAPUT -t SPARKMngr:\$UNITNAME:STATUS.VAL "Error: SPARK-LTB-BPM08 doesn't exist") exit 1 fi</pre>
Check that IOC with this BPM Prefix has not already started. If caget returns more that one word, then IOC was not accessible, then not running.	exec \$CAGET -t \$BPM_PREFIX:input:max_adc & tee -a \$IOC_CONFIG/iocAlreadyRunning SPARK-BTS-BPM08:input:max_adc 11

Looking under the hood – Setting PVs

Similarly get BPM Settings Don't forget to check caget did not return junk! exec \$CAGET -t SPARKMngr:SPARK-\$TRANSPORTLINE-GLOBAL:PickupOrientation |& tee \$BPM_CONFIG/pickupOrientation

Write a number of EPICS commands that will be loaded in st.cmd to set the PVs echo "dbpf(\"\$BPM_PREFIX:dsp:pickup_orientation_sp\",\"\$PICKUPORIENTATION\")" >
 /tmp/BPMSettings.env

st.cmd:

iocInit()

Load Settings
< /tmp/BPMSettings.env</pre>

Looking under the hood – Start the IOC

Write the PV Prefix in env file	<pre>echo "epicsEnvSet(\"IOCNAME\",\"\$BPM_PREFIX\")" > /tmp/IOCname.env echo " -> IOC name \$BPM_PREFIX"</pre>	
st.cmd:		
Start the IOC	exec \$PROCSERV \$PROCARGS \$PORT \$TOP/st.cmd	

NOTE: This is a very simplified set of commands Current startIOC.sh is 760 lines long. Includes several checks and logging commands

EDM Panels

Non-default Global BTS BPM Settings

linear 🗆

Pickup orientation

diagonal 🔲 Number of bunches 👔

Calculation equation

Data averaging

Status

- 2 SPARK-EL installed in parallel with the uTCA with 10 dB couplers
- We have demo'ed the boot process
- Next steps before transition to Ops:
 - Implement network authentication, time...
 - Port steering codes to use SPARK-EL PVs
 - Integrate in the control system

Acknowledgements

- Jeff Corbett
- Daniel Morataya
- Chris Ramirez
- Clemens Wermelskirchen
- Shantha Condamoor

- INSTRUMENTATION TECHNOLOGIES
- Peter Leban
- Matjaž Žnidarčič

