

SOLEIL Fast Orbit Feedback System

Nicolas HUBERT

Synchrotron SOLEIL On behalf of the Diagnostics group

October 15, 2008

SOLEIL Fast Orbit Feedback System, Libera Workshop 2008

- Fast Orbit Feedback Architecture
 - Elements of the systems
 - Data distribution
- Data Processing
 - Communication controller
 - Matrix multiplication
 - Controller
 - RS 485 Communication
- FOFB status
 - Status
 - Download process
 - FOFB efficiency
 - Future improvements
- Conclusion

FOFB Architecture

- Dedicated air coil correctors
 - over stainless steel bellows at each side of straight sections
- An 'all embedded' solution
 - All the processing of the FOFB is done in the LIBERA FPGA, on top of the position calculation provided by Instrumentation Technologies
 - Need all interfaces built in the LIBERA for data exchange.

FOFB Architecture

- Matrix multiplication is split and distributed
 - Inverse response matrix (SVD computation is done off-line)
 - Processing of one line of the matrix is done in one Libera FPGA
 - => 48 Liberas (out of 120) are calculating correction data for FOFB

1 çolumn

FOFB Architecture:

96 power-supplies

FOFB Architecture: Fast Dedicated Network

- Global Feedback:
 - Fast Acquisition data (~10 kHz) have to be delivered to all BPM modules

SOLEIL Fast Orbit Feedback System, Libera Workshop 2008

Data Processing:

inside the Libera FPGA

Data processing: Communication Controller

Data Processing:

inside the Libera FPGA

October 15, 2008

SOLEIL Fast Orbit Feedback System, Libera Workshop 2008

Data processing: Matrix multiplication

One line of the inverse response matrix

1	2	3	4	5	 	118	119	120
R -1	 	R ⁻¹	R -1	R -1				

Data Processing:

inside the Libera FPGA

October 15, 2008

SOLEIL Fast Orbit Feedback System, Libera Workshop 2008

- PI controller is used
 - Proportional coefficient is not implemented in the FPGA
 - the inverse response matrix is multiplied by the right coefficient before being sent to the FPGA
 - Integrator part is an accumulator with a configurable coefficient

Data Processing:

inside the Libera FPGA

October 15, 2008

SOLEIL Fast Orbit Feedback System, Libera Workshop 2008

Data processing: RS 485

- RS 485 serial link to power supplies:
 - One way communication: Libera => power-supply
 - Simple protocol:
 - 22 bits per frame: 16 bits for data (15 bits+1 for the sign)
 - 2 bits for parity
 - 4 bits for synchronization (start/stop)
 - Link rate is 1.25 Mbits/s
 - Transmission delay is around 20 μs

FOFB Architecture: Power Supply Control

Processing latency

Position processing	190 µs			
Data Distribution	60 µs			
Matrix Multiplication	5 µs			
PI controller	1 μs			
Serialization and transmission to PS	20 µs			
FPGA delay	~280 µs			
Power supply latency	20 μs			
Eddy currents in vacuum chamber	~60 µs			

FOFB Status

- FOFB is in operation since mid-September :
 - Efficient from DC. No other orbit feedback running
 - RF part is not corrected by the FOFB but by a matlab routine (every 10 s).
 - At every injection (every 8 hours) a routine download the DC part of the current in the fast correctors into the slow ones.
 - For top-up operation: the download routine will run continuously (a 10s repetition rate has been tested successfully)

Download process

October 15, 2008

FOFB Efficiency (1-350 Hz)

FIL

vertical position at source points

SOLEIL Fast Orbit Feedback System, Libera Workshop 2008

FOFB Efficiency (DC-0.01 Hz) Long term drifts

October 15, 2008

SOLEIL Fast Orbit Feedback System, Libera Workshop 2008

Results and further improvements

- Results:
 - No need for very good efficiency at high frequency
 - A damping factor of 2 is enough on 50 Hz -> done
 - We need a very good efficiency at low frequencies (0.01 Hz 1 Hz)
 - beam stabilized:
 - with insertion devices moving -> done
 - with overhead cranes moving -> done
 - Stabilization of the long term drifts is about 1 µm rms
 - -> Needs to be improved
- Further improvements:
 - Optimisation on the eigen values
 - Different weight could be applied to different modes
 - Install the current dependence correction tables provided by release 1.82
 - Stability at the bending magnets source points:
 - Add more correctors
 - Include the X-BPMs in the loop

October 15, 2008 SOLEIL Fast Orbit Feedback System, Libera Workshop 2008

Conclusion

- SOLEIL FOFB system is very specific:
 - Advantages:
 - Dedicated air-coil correctors :
 - Cut-off frequency can be bring to 300 Hz if needed
 - Embedded system
 - Lower-cost using computing resources of FPGA BPM system
 - Flexibility
 - Easy change of correction algorithm
 - Disadvantages:
 - Set-up and optimization of the system take more time:
 - 2 sets of correctors: Different location and efficiency ->Download process

Presentation is over !!

- Any upgrade of the Libera firmware implies new integration and new test of the FOFB algorithm.
- First results have proven that this solution works and is very reliable.

October 15, 2008